Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
6,391 result(s) for "garbage"
Sort by:
Catalyzing paradigm shifts in global waste management: a case study of Saharanpur Smart city
This study is a comprehensive introduction to the concept of decentralized waste management and analyzes its current state in different regions of the world. In order to shed light on potential advancements and trends in waste management practices, it examined the numerous strategies and actions employed in various locales to manage garbage locally. In addition, this study analyzed and examined persistent gaps and disparities in decentralized waste management across numerous countries and areas. The authors highlighted the disparities between infrastructure, technological adoption, statutory frameworks, and socioeconomic elements that make waste management operations.
Ecotoxicological risk assessment for sediments of Çavuşlu stream in Giresun, Turkey: association between garbage disposal facility and metallic accumulation
The objective of this paper was to stress the possible potential toxic element (PTE) accumulation in the surface sediments of the Çavuşlu Stream (ÇS), as well as examining the source identification of whether or not any association between garbage disposal facility (GDF) and ecotoxicity or human health risk in Giresun, Turkey. The sediment specimens were analyzed by inductively coupled plasma mass spectroscopy (ICP-MS) followed by microwave digestion. The descending order of metals (mg/kg) in sediments were as follows: Fe (38,791 ± 3269) > Al (27,753 ± 4051) > Mn (730.90 ± 114.60) > Cr (233.39 ± 53.32) > V (176.40 ± 19.66) > Cu (85.22 ± 6.06) > Ni (72.87 ± 11.50) > Zn (46.45 ± 3.68) > Co (21.96 ± 3.33) > Pb (12.17 ± 1.97) > As (3.12 ± 1.45) > Sb (0.22 ± 0.06) > Cd (0.17 ± 0.02) > Hg (0.04 ± 0.01). Among these elements, certain metals (V, Cr, Cu, and Ni) in the sediments were above the average shale. Cr and Ni levels were above their corresponding threshold effect level (TEL) and probable effect level (PEL) values while Cu concentration exceeding its TEL, indicating that benthic organisms in the sediment of ÇS have likely toxic responses. Based on the results from contamination factor (CF), enrichment factor (EF), and geo-accumulation factor ( I geo ) values of PTEs, the sediment was frequently classified into moderate contamination, moderate enrichment, and unpolluted to moderately polluted group. Pollution load index (PLI), integrated pollution index (IPI), and ecological risk index ( E r i ) indicated low pollution or low potential ecological risk. Toxicity risk index (TRI) and toxic unit analysis (TUs) suggested moderate toxicity. The outcomes of hazard quotient (HQ), total hazard index (THI), and lifetime cancer risk (LCR) stressed out that PTEs would not pose a significant health risk when adults are exposed to sediments in ÇS. However, a non-cancerogenic health risk for children was considered as the collective effect of 14 PTE (THI = 1.47 > 1). Multivariate statistical analysis (principal component analysis (PCA), Pearson’s correlation coefficient (PCC), and hierarchical cluster analysis (HCA)) outlined that the metallic accumulation in the sediments of ÇS was related to lithological, geological, and anthropogenic impacts. Therefore, the GDF is likely a major reason in terms of anthropogenic pollution in the sediments of the ÇS.
Plastic pollution and potential solutions
A review is presented of the manufacture and use of different types of plastic, and the effects of pollution by these materials on animal, human and environmental health, insofar as this is known. Since 2004, the world has made as much plastic as it did in the previous half century, and it has been reckoned that the total mass of virgin plastics ever made amounts to 8.3 billion tonnes, mainly derived from natural gas and crude oil, used as chemical feedstocks and fuel sources. Between 1950 and 2015, a total of 6.3 billion tonnes of primary and secondary (recycled) plastic waste was generated, of which around 9% has been recycled, and 12% incinerated, with the remaining 79% either being stored in landfills or having been released directly into the natural environment. In 2015, 407 million tonnes (Mt) of plastic was produced, of which 164 Mt was consumed by packaging (36% of the total). Although quoted values vary, packaging probably accounts for around one third of all plastics used, of which approximately 40% goes to landfill, while 32% escapes the collection system. It has been deduced that around 9 Mt of plastic entered the oceans in 2010, as a result of mismanaged waste, along with up to 0.5 Mt each of microplastics from washing synthetic textiles, and from the abrasion of tyres on road surfaces. However, the amount of plastics actually measured in the oceans represents less than 1% of the (at least) 150 Mt reckoned to have been released into the oceans over time. Plastic accounts for around 10% by mass of municipal waste, but up to 85% of marine debris items – most of which arrive from land-based sources. Geographically, the five heaviest plastic polluters are P.R. China, Indonesia, Philippines, Vietnam and Sri Lanka, which between them contribute 56% of global plastic waste. Larger, primary plastic items can undergo progressive fragmentation to yield a greater number of increasingly smaller 'secondary' microplastic particles, thus increasing the overall surface area of the plastic material, which enhances its ability to absorb, and concentrate, persistent organic pollutants (POPs) such as dichlorodiphenyltrichloroethane (DDT) and polychlorinated biphenyls (PCBs), with the potential to transfer them to the tissues of animals that ingest the microplastic particles, particularly in marine environments. Although fears that such microparticles and their toxins may be passed via food webs to humans are not as yet substantiated, the direct ingestion of microplastics by humans via drinking water is a distinct possibility – since 92% of samples taken in the USA and 72% in Europe showed their presence – although any consequent health effects are as yet unclear. Foodstuffs may also become contaminated by microplastics from the air, although any consequent health effects are also unknown. In regard to such airborne sources, it is noteworthy that small plastic particles have been found in human lung tissue, which might prove an adverse health issue under given circumstances. It is also very striking that microplastics have been detected in mountain soils in Switzerland, which are most likely windborne in origin. Arctic ice core samples too have revealed the presence of microplastics, which were most likely carried on ocean currents from the Pacific garbage patch, and from local pollution from shipping and fishing. Thus, sea ice traps large amounts of microplastics and transports them across the Arctic Ocean, but these particles will be released into the global environment when the ice melts, particularly under the influence of a rising mean global temperature. While there is a growing emphasis toward the substitution of petrochemically derived plastics by bioplastics, controversy has arisen in regard to how biodegradable the latter actually are in the open environment, and they presently only account for 0.5% of the total mass of plastics manufactured globally. Since the majority of bioplastics are made from sugar and starch materials, to expand their use significantly raises the prospect of competition between growing crops to supply food or plastics, similarly to the diversion of food crops for the manufacture of primary biofuels. The use of oxo-plastics, which contain additives that assist the material to degrade, is also a matter of concern, since it is claimed that they merely fragment and add to the environmental burden of microplastics; hence, the European Union has moved to restrict their use. Since 6% of the current global oil (including natural gas liquids, NGLs) production is used to manufacture plastic commodities – predicted to rise to 20% by 2050 – the current approaches for the manufacture and use of plastics (including their end-use) demand immediate revision. More extensive collection and recycling of plastic items at the end of their life, for re-use in new production, to offset the use of virgin plastic, is a critical aspect both for reducing the amount of plastic waste entering the environment, and in improving the efficiency of fossil resource use. This is central to the ideology underpinning the circular economy, which has common elements with permaculture, the latter being a regenerative design system based on 'nature as teacher', which could help optimise the use of resources in town and city environments, while minimising and repurposing 'waste'. Thus, food might be produced more on the local than the global scale, with smaller inputs of fuels (including transportation fuels for importing and distributing food), water and fertilisers, and with a marked reduction in the use of plastic packaging. Such an approach, adopted by billions of individuals, could prove of immense significance in ensuring future food security, and in reducing waste and pollution – of all kinds.
Suspended garbage detection of transmission lines based on improved YOLOv8
The problem of garbage suspension in transmission lines is an important factor affecting the reliability of the power grid. With the application of artificial intelligence in the detection of abnormal objects in transmission lines, the detection efficiency, accuracy, and stability have been improved to a certain extent. However, the accuracy of detecting suspended garbage in transmission lines is relatively poor. This article uses an improved YOLOv8 algorithm for suspended garbage detection, replacing the original loss function with the SIoU loss function, which improves the iteration speed and detection progress of the model. In addition, the use of depthwise separable convolution instead of the original dilated convolution compensates for the problem of information loss when size objects may exist, greatly improving the model’s ability and accuracy in identifying suspended garbage quality and laying the foundation for improving the accuracy of garbage detection in transmission lines.
Design and Development of an Effective Smart Garbage System using the Internet of Things
Garbage management has become the most pressing challenge in today’s world, particularly in countries with significant population growth rates. Excess of gas can be formed in the environment which causes production of greenhouse gas in the environment. We employed this technology to monitor the level of waste in the garbage, as well as fire and gas emissions. When there is a fire or a significant volume of hazardous gas in the waste. The location will be updated in the web and the buzzer will give an alert. The whole process used to reduce greenhouse gas in the environment. And also, it detects the level of garbage, when the level is high it shares the location to IOT.
Public health utility of cause of death data: applying empirical algorithms to improve data quality
Background Accurate, comprehensive, cause-specific mortality estimates are crucial for informing public health decision making worldwide. Incorrectly or vaguely assigned deaths, defined as garbage-coded deaths, mask the true cause distribution. The Global Burden of Disease (GBD) study has developed methods to create comparable, timely, cause-specific mortality estimates; an impactful data processing method is the reallocation of garbage-coded deaths to a plausible underlying cause of death. We identify the pattern of garbage-coded deaths in the world and present the methods used to determine their redistribution to generate more plausible cause of death assignments. Methods We describe the methods developed for the GBD 2019 study and subsequent iterations to redistribute garbage-coded deaths in vital registration data to plausible underlying causes. These methods include analysis of multiple cause data, negative correlation, impairment, and proportional redistribution. We classify garbage codes into classes according to the level of specificity of the reported cause of death (CoD) and capture trends in the global pattern of proportion of garbage-coded deaths, disaggregated by these classes, and the relationship between this proportion and the Socio-Demographic Index. We examine the relative importance of the top four garbage codes by age and sex and demonstrate the impact of redistribution on the annual GBD CoD rankings. Results The proportion of least-specific (class 1 and 2) garbage-coded deaths ranged from 3.7% of all vital registration deaths to 67.3% in 2015, and the age-standardized proportion had an overall negative association with the Socio-Demographic Index. When broken down by age and sex, the category for unspecified lower respiratory infections was responsible for nearly 30% of garbage-coded deaths in those under 1 year of age for both sexes, representing the largest proportion of garbage codes for that age group. We show how the cause distribution by number of deaths changes before and after redistribution for four countries: Brazil, the United States, Japan, and France, highlighting the necessity of accounting for garbage-coded deaths in the GBD. Conclusions We provide a detailed description of redistribution methods developed for CoD data in the GBD; these methods represent an overall improvement in empiricism compared to past reliance on a priori knowledge.
Design of Intelligent Garbage Classification System Based on Internet of Things Technology
With the increasingly prominent problem of environmental pollution, it is extremely urgent to carry out garbage classification. This paper designs an intelligent garbage classification system based on Internet of Things technology, The system is mainly composed of relay driving circuit, infrared induction, metal detection and humidity detection modules. Single chip microcomputer and multi-channel sensors are used to collect and process related data to realize metal garbage recovery, dry garbage and wet garbage classification and delivery, and the collected related data are displayed on the display screen through serial communication. The experimental results show that the system has the characteristics of simple structure, stable performance and convenient operation, which provides a feasible solution for the current garbage classification and treatment.
There’s Your Problem
Troubleshooting is a universal activity. Engineers do it, but so do scientists, car mechanics, and everyone else. A chef in a top restaurant may be puzzling at this very moment as to why a souffle has fallen. You might have to figure out why your garbage disposal is jammed, or why your kid's favorite electronic toy stopped working. Those who are good at it have a strong bent toward curiosity: wondering how things work, and puzzling at what has gone wrong when things don't work. Add to that persistence (and at times, patience) and you have the right person for the job. There is an art and a science to getting to the root cause of a problem. That point is half the work, and sometimes more than half. The other half--which is at times left to others--is figuring out how to fix it.