Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeDegree TypeIs Full-Text AvailableSubjectPublisherSourceGranting InstitutionDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
19,093
result(s) for
"gasification"
Sort by:
Gasification processes
by
Nikrityuk, Petr A
,
Meyer, Bernd
in
Chemistry
,
Coal gasification
,
Coal gasification -- Computer simulation
2014
Bridging the gap between the well-known technological description of gasification and the underlying theoretical understanding, this book covers the latest numerical and semi-empirical models describing interphase phenomena in high-temperature conversion processes. Consequently, it focuses on the description of gas-particle reaction systems by state-of-the-art computational models in an integrated, unified form. Special attention is paid to understanding and modeling the interaction between individual coal particles and a surrounding hot gas, including heterogeneous and homogeneous chemical reactions inside the particle on the particle interface and near the interface between the solid and gas phases. While serving the needs of engineers involved in industrial research, development and design in the field of gasification technologies, this book's in-depth coverage makes it equally ideal for young and established researchers in the fields of thermal sciences and chemical engineering with a focus on heterogeneous and homogeneous reactions.
Stopping climate change : the case for hydrogen and coal
This book documents the advantages and limitations of various electricity generation methods. It illustrates how both electricity and motor fuel can be cost-effectively derived from coal, natural gas or other indigenous fuels, thereby eliminating our dependence on imported oil and the power of OPEC. It favours electricity generation systems powered exclusively by natural gas, coal, nuclear and renewables and motor vehicles powered by hydrogen (electricity from coal gasification with carbon capture and sequestration (CCS) and hydrogen as the fuel powering fuel-cell electric vehicles produced from natural gas or by gasifying coal With CCS.) The book also demonstrates that the US can meet the Climate Change goal of reducing all greenhouse gases by 80% below 1990 levels in both the transportation and electric utility sectors using hydrogen and coal.
A critical review on biomass gasification, co-gasification, and their environmental assessments
by
Farzad, Somayeh
,
Görgens, Johann F.
,
Mandegari, Mohsen Ali
in
Biomass
,
Biomass gasification
,
Climate change
2016
Gasification is an efficient process to obtain valuable products from biomass with several potential applications, which has received increasing attention over the last decades. Further development of gasification technology requires innovative and economical gasification methods with high efficiencies. Various conventional mechanisms of biomass gasification as well as new technologies are discussed in this paper. Furthermore, co-gasification of biomass and coal as an efficient method to protect the environment by reduction of greenhouse gas (GHG) emissions has been comparatively discussed. In fact, the increasing attention to renewable resources is driven by the climate change due to GHG emissions caused by the widespread utilization of conventional fossil fuels, while biomass gasification is considered as a potentially sustainable and environmentally-friendly technology. Nevertheless, social and environmental aspects should also be taken into account when designing such facilities, to guarantee the sustainable use of biomass. This paper also reviews the life cycle assessment (LCA) studies conducted on biomass gasification, considering different technologies and various feedstocks.
Journal Article
Producing hydrogen-rich syngas via microwave heating and co-gasification: a systematic review
by
Faishal, Afif
,
Yusuf, Mirza
,
Suyitno, Suyitno
in
Activated carbon
,
Adsorbents
,
Calorific value
2022
Co-gasification contributes significantly to the generation of hydrogen-rich syngas since it not only addresses the issue of feedstock variation but also has synergistic benefits. In this article, recent research on hydrogen concentration and yield, tar content, gasification efficiency, and carbon conversion efficiency is explored systematically. In feedstocks with high water content, steam gasification and supercritical hydrothermal gasification technologies are ideal for producing hydrogen at a concentration of 57%, which can be increased to 82.9% using purification technology. Carbonized coals, chars, and cokes have high microwave absorption when used as feedstocks. Moreover, coconut activated carbon contains elements that provide a high tan δ value and are worthy of further development as feedstocks, adsorbents or catalysts. Meanwhile, the FeSO4 catalyst has the greatest capacity for storing microwave energy and producing dielectric losses; therefore, it can serve as both a catalyst and microwave absorber. Although microwave heating is preferable to conventional heating, the amount of hydrogen it generates remains modest, at 60% and 32.75% in single-feeding and co-feeding modes, respectively. The heating value of syngas produced using microwaves is 17.44 MJ/m³, much more than that produced via conventional heating. Thus, despite a lack of research on hydrogen-rich syngas generation based on co-gasification and microwave heating, such techniques have the potential to be developed at both laboratory and industrial scales. In addition, the dielectric characteristics of feedstocks, beds, adsorbents, and catalysts must be further investigated to optimize the performance of microwave heating processes.
Journal Article
Quantitative Evaluation of Underground Coal Gasification Based on a CO2 Gasification Agent
by
Zhao, Yufeng
,
Chen, Shanshan
,
Chen, Yanpeng
in
Carbon dioxide
,
Coal gasification
,
Coal mining
2023
Using carbon dioxide as a gasification agent for underground coal gasification (UCG) can not only reduce carbon dioxide emissions but is also expected to lead to a new natural gas technology revolution and ensure national energy security. To explore the effect of the oxygen content in oxygen-enriched carbon dioxide gasification agents on the results of gasification experiments, underground gasification experiments under different oxygen-enrichment conditions were designed, and quantitative parameters were used to analyze and evaluate the gas produced in the gasification experiments. The results showed that as the oxygen content in the oxygen-enriched carbon dioxide gasification agent increased, the CO and H2 in the combustible gas gradually increased, and the calorific value of the combustible gas also slowly increased, reaching a peak value under the gasification condition of 60% oxygen concentration, and then decreased slightly; the product formation rate and the gas production per unit mass of coal fluctuated. The coal consumption rate increased with time and was relatively stable. According to theoretical calculations for the gasification energy recovery evaluation system, the overall energy recovery rate was 56.34%, and the energy utilization rate was relatively high. Research on quantitative indicators based on gas production data has good practical significance for evaluating the gasification efficiency of UCG, which can be used to better evaluate and control the reaction process of UCG.
Journal Article
Investigation of Underground Coal Gasification in Laboratory Conditions: A Review of Recent Research
by
Laciak, Marek
,
Durdán, Milan
,
Kačur, Ján
in
Alternative energy sources
,
Automation
,
Carbon sequestration
2023
The underground coal gasification (UCG) technology converts coal into product gas and provides the option of environmentally and economically attractive coal mining. Obtained syngas can be used for heating, electricity, or chemical production. Numerous laboratory coal gasification trials have been performed in the academic and industrial fields. Lab-scale tests can provide insight into the processes involved with UCG. Many tests with UCG have been performed on ex situ reactors, where different UCG techniques, the effect of gasification agents, their flow rates, pressures, and various control mechanisms to improve gasification efficiency and syngas production have been investigated. This paper provides an overview of recent research on UCG performed on a lab scale. The study focuses on UCG control variables and their optimization, the effect of gasification agents and operating pressure, and it discusses results from the gasification of various lignites and hard coals, the possibilities of steam gasification, hydrogen, and methane-oriented coal gasification, approaches in temperature modeling, changes in coal properties during gasification, and environmental risks of UCG. The review focuses on laboratory tests of UCG on ex situ reactors, results, and the possibility of knowledge transfer to in situ operation.
Journal Article
Surface Subsidence Response to Safety Pillar Width Between Reactor Cavities in the Underground Gasification of Thin Coal Seams
by
Vovna, Oleksandr
,
Sakhno, Svitlana
,
Sakhno, Ivan
in
Chemical reactors
,
Clean technology
,
Coal gasification
2025
Underground coal gasification (UCG) is a clean and automated coal technological process that has great potential. Environmental hazards such as the risk of ground surface subsidence, flooding, and water pollution are among the problems that restrict the application of UCG. Overburden rock stability above UCG cavities plays a key role in the prevention of the mentioned environmental hazards. It is necessary to optimize the safety pillar width to maintain rock stability and ensure minimal coal losses. This study focused on the investigation of the influence of pillar parameters on surface subsidence, taking into account the non-rectangular shape of the pillar and the presence of voids above the UCG reactor in the immediate roof. The main research was carried out using the finite element method in ANSYS 17.2 software. The results of the first simulation stage demonstrated that during underground gasification of a thin coal seam using the Controlled Retraction Injection Points method, with reactor cavities measuring 30 m in length and pillars ranging from 3.75 to 15 m in width, the surface subsidence and rock movement above gasification cavities remain within the pre-peak limits, provided the safety pillar’s bearing capacity is maintained. The probability of crack initiation in the rock mass and subsequent environmental hazards is low. However, in the case of the safety pillars’ destruction, there is a high risk of crack evolution in the overburden rock. In the case of crack formation above the gasification panel, the destruction of aquiferous sandstones and water breakthroughs into the gasification cavities become possible. The surface infrastructure is therefore at risk of destruction. The assessment of the pillars’ stability was carried out at the second stage using numerical simulation. The study of the stress–strain state and temperature distribution in the surrounding rocks near a UCG reactor shows that the size of the heat-affected zone of the UCG reactor is less than the thickness of the coal seam. This shows that there is no significant direct influence of the gasification process on the stability of the surrounding rocks around previously excavated cavities. The coal seam failure in the side walls of the UCG reactor, which occurs during gasification, leads to a reduction in the useful width of the safety pillar. The algorithm applied in this study enables the optimization of pillar width under any mining and geological conditions. This makes it possible to increase the safety and reliability of the UCG process. For the conditions of this research, the failure of coal at the stage of gasification led to a decrease in the useful width of the safety pillar by 0.5 m. The optimal width of the pillar was 15 m.
Journal Article