Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
7,415 result(s) for "gene banks"
Sort by:
Fungal Pathogens and Seed Storage in the Dry State
Seeds can harbor a wide range of microorganisms, especially fungi, which can cause different sanitary problems. Seed quality and seed longevity may be drastically reduced by fungi that invade seeds before or after harvest. Seed movement can be a pathway for the spread of diseases into new areas. Some seed-associated fungi can also produce mycotoxins that may cause serious negative effects on humans, animals and the seeds themselves. Seed storage is the most efficient and widely used method for conserving plant genetic resources. The seed storage conditions used in gene banks, low temperature and low seed moisture content, increase seed longevity and are usually favorable for the survival of seed-borne mycoflora. Early detection and identification of seed fungi are essential activities to conserve high-quality seeds and to prevent pathogen dissemination. This article provides an overview of the characteristics and detection methods of seed-borne fungi, with a special focus on their potential effects on gene bank seed conservation. The review includes the following aspects: types of seed-borne fungi, paths of infection and transmission, seed health methods, fungi longevity, risk of pathogen dissemination, the effect of fungi on seed longevity and procedures to reduce the harmful effects of fungi in gene banks.
Development of a robust SNP marker set for genotyping diverse gene bank collections of polyploid roses
Background Due to genetic depletion in nature, gene banks play a critical role in the long-term conservation of plant genetic resources and the provision of a wide range of plant genetic diversity for research and breeding programs. Genetic information on accessions facilitates gene bank management and can help to conserve limited resources and to identify taxonomic misclassifications or mislabelling. Here, we developed SNP markers for genotyping 4,187 mostly polyploid rose accessions from large rose collections, including the German Genebank for Roses. Results We filtered SNP marker information from the RhWag68k Axiom SNP array using call rates, uniformity of the four allelic dosage groups and chromosomal position to improve genotyping efficiency. After conversion to individual PACE® markers and further filtering, we selected markers with high discriminatory power. These markers were used to analyse 4,187 accessions with a mean call rate of 91.4%. By combining two evaluation methods, the mean call rate was increased to 95.2%. Additionally, the robustness against the genotypic groups used for calling was evaluated, resulting in a final set of 18 markers. Analyses of 94 pairs of assumed duplicate accessions included as controls revealed unexpected differences for eight pairs, which were confirmed using SSR markers. After removing the duplicates and filtering for accessions that were robustly called with all 18 markers, 141 out of the 1,957 accessions showed unexpected identical marker profiles with at least one other accession in our PACE® and SSR analysis. Given the attractiveness of NGS technologies, 13 SNPs from the marker set were also analysed using amplicon sequencing, with 76% agreement observed between PACE® and amplicon markers. Conclusions Although sampling error cannot be completely excluded, this is an indication that mislabelling occurs in rose collections and that molecular markers may be able to detect these cases. In future applications, our marker set could be used to develop a core reference set of representative accessions, and thus optimise the selection of gene bank accessions.
Molecular and cytological characterization of the global Musa germplasm collection provides insights into the treasure of banana diversity
Bananas ( Musa spp.) are one of the main fruit crops grown worldwide. With the annual production reaching 144 million tons, their production represents an important contribution to the economies of many countries in Asia, Africa, Latin-America and Pacific Islands. Most importantly, bananas are a staple food for millions of people living in the tropics. Unfortunately, sustainable banana production is endangered by various diseases and pests, and the breeding for resistant cultivars relies on a far too small base of genetic variation. Greater diversity needs to be incorporated in breeding, especially of wild species. Such work requires a large and thoroughly characterized germplasm collection, which also is a safe depository of genetic diversity. The largest ex situ Musa germplasm collection is kept at the International Transit Centre (ITC) in Leuven (Belgium) and currently comprises over 1500 accessions. This report summarizes the results of systematic cytological and molecular characterization of the Musa ITC collection. By December 2015, 630 accessions have been genotyped. The SSR markers confirmed the previous morphological based classification for 84% of ITC accessions analyzed. The remaining 16% of the genotyped entries may need field verification by taxonomist to decide if the unexpected classification by SSR genotyping was correct. The ploidy level estimation complements the molecular data. The genotyping continues for the entire ITC collection, including newly introduced accessions, to assure that the genotype of each accession is known in the largest global Musa gene bank.
Genetic Diversity and Population Structure of Cucumber (Cucumis sativus L.)
Knowing the extent and structure of genetic variation in germplasm collections is essential for the conservation and utilization of biodiversity in cultivated plants. Cucumber is the fourth most important vegetable crop worldwide and is a model system for other Cucurbitaceae, a family that also includes melon, watermelon, pumpkin and squash. Previous isozyme studies revealed a low genetic diversity in cucumber, but detailed insights into the crop's genetic structure and diversity are largely missing. We have fingerprinted 3,342 accessions from the Chinese, Dutch and U.S. cucumber collections with 23 highly polymorphic Simple Sequence Repeat (SSR) markers evenly distributed in the genome. The data reveal three distinct populations, largely corresponding to three geographic regions. Population 1 corresponds to germplasm from China, except for the unique semi-wild landraces found in Xishuangbanna in Southwest China and East Asia; population 2 to Europe, America, and Central and West Asia; and population 3 to India and Xishuangbanna. Admixtures were also detected, reflecting hybridization and migration events between the populations. The genetic background of the Indian germplasm is heterogeneous, indicating that the Indian cucumbers maintain a large proportion of the genetic diversity and that only a small fraction was introduced to other parts of the world. Subsequently, we defined a core collection consisting of 115 accessions and capturing over 77% of the SSR alleles. Insight into the genetic structure of cucumber will help developing appropriate conservation strategies and provides a basis for population-level genome sequencing in cucumber.
Opportunities and challenges related to sperm cryopreservation in Atlantic salmon gene banks
Atlantic salmon are facing population declines and loss of productivity within populations due to anthropogenic impact factors and reduced survival at sea. Biobanking is an increasingly used tool to conserve the genetic integrity and diversity of populations threatened by extirpation. The aim of the current article is to discuss the opportunities and challenges that increased use of cryopreservation brings to biobanking activities, using the Norwegian Gene Bank (NGB) for Atlantic salmon as a model system. The NGB was established in 1985 and involves a traditional living gene bank, as well as “frozen gene bank” where paternal germplasm is stored as cryopreserved sperm. Cryopreservation is a method where cells or tissues are frozen in liquid nitrogen to temperatures where all biological processes are paused, thus allowing the cells to remain viable after later warming/thawing to temperatures above 0°C. Cryopreservation is therefore used in long‐term preservation of genetic diversity and characteristics of wild populations. Until recently, implementation of large scale use of cryopreserved sperm in the live gene bank has been limited by a lack of protocols/capacity to preserve larger portions of sperms. More recent developments in cryopreservation methodologies, now enables preservation of samples sufficient for mass fertilization. Mass fertilization by cryopreserved sperm opens new opportunities to gene bank operations, including increased capacity to restore lost populations, mitigation of genetic changes in broodstock fish, as well as increased capacity at live gene bank facilities through the replacement of older males with frozen sperm. Knowledge demands regarding potential genetic damage to cryopreserved milt and potential epigenetic effects caused by the cryopreservation procedure should, however, be addressed. Increased use of sperm cryopreservation may improve ex situ conservation of Atlantic salmon and other salmonids via frozen and live gene bank operations.
Using ddRADseq to assess the genetic diversity of in-farm and gene bank cacao resources in the Baracoa region, eastern Cuba, for use and conservation purposes
The Baracoa region, eastern Cuba, hosts around 80 % of the country cacao ( Theobroma cacao L.) plantations. Cacao plants in farms are diverse in origin and propagation, with grafted and hybrid plants being the more common ones. Less frequent are plants from cuttings, TSH progeny, and traditional Cuban cacao. A national cacao gene bank is also present in Baracoa, with 282 accessions either prospected in Cuba or introduced from other countries. A breeding program associated with the gene bank started in the 1990s based on agro-morphological descriptors. The genetic diversity of cacao resources in Baracoa has been poorly described, except for traditional Cuban cacao, affecting the proper development of the breeding program and the cacao planting policies in the region. To assess the population structure and genetic diversity of cacao resources in Baracoa region, we genotyped plants from both cacao gene bank (CG) and cacao farms (CF) applying a new ddRADseq protocol for cacao. After data processing, two SNPs datasets containing 11,425 and 6,481 high-quality SNPs were generated with 238 CG and 135 CF plants, respectively. SNPs were unevenly distributed along the 10 cacao chromosomes and laid mainly in noncoding regions of the genome. Population structure analysis with these SNP datasets identified seven and four genetic groups in CG and CF samples, respectively. Clustering using UPGMA and principal component analysis mostly agree with population structure results. Amelonado was the predominant cacao ancestry, accounting for 49.22 % (CG) and 57.73 % (CF) of the total. Criollo, Contamana, Iquitos, and Nanay ancestries were detected in both CG and CF samples, while Nacional and Marañon backgrounds were only identified in CG. Genetic differentiation among CG ( F ST ranging from 0.071 to 0.407) was higher than among CF genetic groups ( F ST : 0.093–0.282). Genetic diversity parameters showed similar values for CG and CF samples. The CG and CF genetic groups with the lowest genetic diversity parameters had the highest proportion of Amelonado ancestry. These results should contribute to reinforcing the ongoing breeding program and updating the planting policies on cacao farms, with an impact on the social and economic life of the region.
Limited genetic changes observed during in situ and ex situ conservation in Nordic populations of red clover (Trifolium pratense)
IntroductionIn situ and ex situ conservation are the two main approaches for preserving genetic diversity. The advantages and disadvantages of the two approaches have been discussed but their genetic effects have not been fully evaluated.MethodsIn this study we investigate the effects of the two conservation approaches on genetic diversity in red clover. Seed samples collected from wild populations in Sweden and Norway in 1980, their subsequent generations created during seed regeneration at the gene bank and samples recollected from the same location as the original samples, were analyzed with microsatellite markers, alongside reference samples from cultivars.ResultsOverall, there was a differentiation between cultivars and the wild material and between wild material from Sweden and Norway. In general, the original collections clustered together with the later generations of the same accession in the gene bank, and with the recollected samples from the same location, and the level of diversity remained the same among samples of the same accession. Limited gene flow from cultivated varieties to the wild populations was detected; however, some wild individuals are likely to be escapees or affected by gene flow.DiscussionIn conclusion, there were examples of genetic changes within individual accessions both in situ and ex situ , as is also to be expected in any living population. However, we observed only limited genetic changes in both in situ and ex situ conservation over the generations included in this study and with the relatively large populations used in the ex situ conservation in the gene bank at NordGen.
Reliable genomic strategies for species classification of plant genetic resources
Background To address the need for easy and reliable species classification in plant genetic resources collections, we assessed the potential of five classifiers (Random Forest, Neighbour-Joining, 1-Nearest Neighbour, a conservative variety of 3-Nearest Neighbours and Naive Bayes) We investigated the effects of the number of accessions per species and misclassification rate on classification success, and validated theirs generic value results with three complete datasets. Results We found the conservative variety of 3-Nearest Neighbours to be the most reliable classifier when varying species representation and misclassification rate. Through the analysis of the three complete datasets, this finding showed generic value. Additionally, we present various options for marker selection for classification taks such as these. Conclusions Large-scale genomic data are increasingly being produced for genetic resources collections. These data are useful to address species classification issues regarding crop wild relatives, and improve genebank documentation. Implementation of a classification method that can improve the quality of bad datasets without gold standard training data is considered an innovative and efficient method to improve gene bank documentation.
Oxidative Stress, Ageing and Methods of Seed Invigoration: An Overview and Perspectives
The maintenance of seed quality during the long-term conservation of plant genetic resources is crucial for averting the projected food crises that are linked to the changing climate and rising world population. However, ageing-induced loss of seed vigour and viability during storage remains an inevitable process that compromises productivity in several orthodox-seeded crop species. Seed ageing under prolonged storage, which can occur even under optimal conditions, induces several modifications capable of causing loss of intrinsic physiological quality traits, including germination capacity and vigour, and stand establishment. The problems posed by seed ageing have motivated the development of various techniques for mitigating their detrimental effects. These invigoration techniques generally fall within one of two categories: (1) priming or pre-hydrating seeds in a solution for improved post-harvest performance, or (2) post-storage reinvigoration which often involves soaking seeds recovered from storage in a solution. Seed priming methods are generally divided into classical (hydropriming, osmopriming, redox priming, biostimulant priming, etc.) and advanced (nanopriming, magnetopriming and priming using other physical agents) techniques. With the increasing popularity of seed invigoration techniques to achieve the much-desired enhanced productivity and resilience in the face of a changing climate, there is an urgent need to explore these techniques effectively (in addition to other important practices such as plant breeding, fertilizer application, and the control of pests and diseases). This review aims to provide an overview of ageing in orthodox seeds and invigoration techniques that can enhance desirable agronomic and physiological characters.
Using Genome-Wide Predictions to Assess the Phenotypic Variation of a Barley (Hordeum sp.) Gene Bank Collection for Important Agronomic Traits and Passport Information
Genome-wide predictions are a powerful tool for predicting trait performance. Against this backdrop we aimed to evaluate the potential and limitations of genome-wide predictions to inform the barley collection of the Federal ex situ Genebank for Agricultural and Horticultural Crops with phenotypic data on complex traits including flowering time, plant height, thousand grain weight, as well as on growth habit and row type. We used previously published sequence data, providing information on 306,049 high-quality SNPs for 20,454 barley accessions. The prediction abilities of the two unordered categorical traits row type and growth type as well as the quantitative traits flowering time, plant height and thousand grain weight were investigated using different cross validation scenarios. Our results demonstrate that the unordered categorical traits can be predicted with high precision. In this way genome-wide prediction can be routinely deployed to extract information pertinent to the taxonomic status of gene bank accessions. In addition, the three quantitative traits were also predicted with high precision, thereby increasing the amount of information available for genotyped but not phenotyped accessions. Deeply phenotyped core collections, such as the barley 1,000 core set of the IPK Gatersleben, are a promising training population to calibrate genome-wide prediction models. Consequently, genome-wide predictions can substantially contribute to increase the attractiveness of gene bank collections and help evolve gene banks into bio-digital resource centers.