Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
6,738 result(s) for "global surface ocean"
Sort by:
Global Surface Ocean Acidification Indicators From 1750 to 2100
Accurately predicting future ocean acidification (OA) conditions is crucial for advancing OA research at regional and global scales, and guiding society's mitigation and adaptation efforts. This study presents a new model‐data fusion product covering 10 global surface OA indicators based on 14 Earth System Models (ESMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6), along with three recent observational ocean carbon data products. The indicators include fugacity of carbon dioxide, pH on total scale, total hydrogen ion content, free hydrogen ion content, carbonate ion content, aragonite saturation state, calcite saturation state, Revelle Factor, total dissolved inorganic carbon content, and total alkalinity content. The evolution of these OA indicators is presented on a global surface ocean 1° × 1° grid as decadal averages every 10 years from preindustrial conditions (1750), through historical conditions (1850–2010), and to five future Shared Socioeconomic Pathways (2020–2100): SSP1‐1.9, SSP1‐2.6, SSP2‐4.5, SSP3‐7.0, and SSP5‐8.5. These OA trajectories represent an improvement over previous OA data products with respect to data quantity, spatial and temporal coverage, diversity of the underlying data and model simulations, and the provided SSPs. The generated data product offers a state‐of‐the‐art research and management tool for the 21st century under the combined stressors of global climate change and ocean acidification. The gridded data product is available in NetCDF at the National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information: https://www.ncei.noaa.gov/data/oceans/ncei/ocads/metadata/0259391.html, and global maps of these indicators are available in jpeg at: https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/synthesis/surface-oa-indicators.html. Plain Language Summary A new data product, based on the latest computer simulations and observational data, offers improved projections of ocean acidification (OA) conditions from the start of the Industrial Revolution in 1750 to the end of the 21st century. These projections will support OA research at regional and global scales, and provide essential information to guide OA mitigation and adaptation efforts for various sectors, including fisheries, aquaculture, tourism, marine resource decision‐makers, and the general public. Key Points This study presents the evolution of 10 ocean acidification (OA) indicators in the global surface ocean from 1750 to 2100 By leveraging 14 Earth System Models (ESMs) and the latest observational data, it represents a significant advancement in OA projections This inter‐model comparison effort showcases the overall agreements among different ESMs in projecting surface ocean carbon variables
A note on ocean surface drift with application to surface velocities measured with HF Radar
The ocean drift current consists of a (local) pure drift current generated by the interaction of wind and waves at the sea surface, to which the surface geostrophic current is added vectorially. We present (a) a similarity solution for the wave boundary layer (which has been validated through the prediction of the 10-m drag law), from which the component of pure drift current along the direction of the wind (and hence the speed factor) can be evaluated from the 10-m wind speed and the peak wave period, and (b) a similarity solution for the Ekman layers of the two fluids, which shows that under steady-state neutral conditions the pure drift current lies along the direction of the geostrophic wind, and has a magnitude 0.034 that of the geostrophic wind speed. The co-existence of these two similarity solutions indicates that the frictional properties of the coupled air-sea system are easily evaluated functions of the 10-m wind speed and the peak wave period, and also leads to a simple expression for the angle of deflection of the pure drift current to the 10 m wind. The analysis provides a dynamical model for global ocean drift on monthly and annual time scales for which the steady-state neutral model is a good approximation. In particular, the theoretical results appear to be able to successfully predict the mean surface drift measured by HF Radar, which at present is the best technique for studying the near surface velocity profile.
Global reconstruction of historical ocean heat storage and transport
Most of the excess energy stored in the climate system due to anthropogenic greenhouse gas emissions has been taken up by the oceans, leading to thermal expansion and sea-level rise. The oceans thus have an important role in the Earth’s energy imbalance. Observational constraints on future anthropogenic warming critically depend on accurate estimates of past ocean heat content (OHC) change. We present a reconstruction of OHC since 1871, with global coverage of the full ocean depth. Our estimates combine timeseries of observed sea surface temperatures with much longer historical coverage than those in the ocean interior together with a representation (a Green’s function) of time-independent ocean transport processes. For 1955–2017, our estimates are comparable with direct estimates made by infilling the available 3D time-dependent ocean temperature observations. We find that the global ocean absorbed heat during this period at a rate of 0.30 ± 0.06 W/m² in the upper 2,000 m and 0.028 ± 0.026 W/m² below 2,000 m, with large decadal fluctuations. The total OHC change since 1871 is estimated at 436 ± 91 × 1021 J, with an increase during 1921–1946 (145 ± 62 × 1021 J) that is as large as during 1990–2015. By comparing with direct estimates, we also infer that, during 1955–2017, up to onehalf of the Atlantic Ocean warming and thermosteric sea-level rise at low latitudes to midlatitudes emerged due to heat convergence from changes in ocean transport.
Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections
Anthropogenic climate change is projected to lead to ocean warming, acidification, deoxygenation, reductions in near-surface nutrients, and changes to primary production, all of which are expected to affect marine ecosystems. Here we assess projections of these drivers of environmental change over the twenty-first century from Earth system models (ESMs) participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6) that were forced under the CMIP6 Shared Socioeconomic Pathways (SSPs). Projections are compared to those from the previous generation (CMIP5) forced under the Representative Concentration Pathways (RCPs). A total of 10 CMIP5 and 13 CMIP6 models are used in the two multi-model ensembles. Under the high-emission scenario SSP5-8.5, the multi-model global mean change (2080–2099 mean values relative to 1870–1899) ± the inter-model SD in sea surface temperature, surface pH, subsurface (100–600 m) oxygen concentration, euphotic (0–100 m) nitrate concentration, and depth-integrated primary production is +3.47±0.78 ∘C, -0.44±0.005, -13.27±5.28, -1.06±0.45 mmol m−3 and -2.99±9.11 %, respectively. Under the low-emission, high-mitigation scenario SSP1-2.6, the corresponding global changes are +1.42±0.32 ∘C, -0.16±0.002, -6.36±2.92, -0.52±0.23 mmol m−3, and -0.56±4.12 %. Projected exposure of the marine ecosystem to these drivers of ocean change depends largely on the extent of future emissions, consistent with previous studies. The ESMs in CMIP6 generally project greater warming, acidification, deoxygenation, and nitrate reductions but lesser primary production declines than those from CMIP5 under comparable radiative forcing. The increased projected ocean warming results from a general increase in the climate sensitivity of CMIP6 models relative to those of CMIP5. This enhanced warming increases upper-ocean stratification in CMIP6 projections, which contributes to greater reductions in upper-ocean nitrate and subsurface oxygen ventilation. The greater surface acidification in CMIP6 is primarily a consequence of the SSPs having higher associated atmospheric CO2 concentrations than their RCP analogues for the same radiative forcing. We find no consistent reduction in inter-model uncertainties, and even an increase in net primary production inter-model uncertainties in CMIP6, as compared to CMIP5.
Pacific decadal oscillation remotely forced by the equatorial Pacific and the Atlantic Oceans
The Pacific Decadal Oscillation (PDO), the leading mode of Pacific decadal sea surface temperature variability, arises mainly from combinations of regional air-sea interaction within the North Pacific Ocean and remote forcing, such as from the tropical Pacific and the Atlantic. Because of such a combination of mechanisms, a question remains as to how much PDO variability originates from these regions. To better understand PDO variability, the equatorial Pacific and the Atlantic impacts on the PDO are examined using several 3-dimensional partial ocean data assimilation experiments conducted with two global climate models: the CESM1.0 and MIROC3.2m. In these partial assimilation experiments, the climate models are constrained by observed temperature and salinity anomalies, one solely in the Atlantic basin and the other solely in the equatorial Pacific basin, but are allowed to evolve freely in other regions. These experiments demonstrate that, in addition to the tropical Pacific’s role in driving PDO variability, the Atlantic can affect PDO variability by modulating the tropical Pacific climate through two proposed processes. One is the equatorial pathway, in which tropical Atlantic sea surface temperature (SST) variability causes an El Niño-like SST response in the equatorial Pacific through the reorganization of the global Walker circulation. The other is the north tropical pathway, where low-frequency SST variability associated with the Atlantic Multidecadal Oscillation induces a Matsuno-Gill type atmospheric response in the tropical Atlantic-Pacific sectors north of the equator. These results provide a quantitative assessment suggesting that 12–29% of PDO variance originates from the Atlantic Ocean and 40–44% from the tropical Pacific. The remaining 27–48% of the variance is inferred to arise from other processes such as regional ocean-atmosphere interactions in the North Pacific and possibly teleconnections from the Indian Ocean.
Ocean forcing of glacier retreat in the western Antarctic Peninsula
In recent decades, hundreds of glaciers draining the Antarctic Peninsula (63° to 70°S) have undergone systematic and progressive change. These changes are widely attributed to rapid increases in regional surface air temperature, but it is now clear that this cannot be the sole driver. Here, we identify a strong correspondence between mid-depth ocean temperatures and glacier-front changes along the ∼1000-kilometer western coastline. In the south, glaciers that terminate in warm Circumpolar Deep Water have undergone considerable retreat, whereas those in the far northwest, which terminate in cooler waters, have not. Furthermore, a mid-ocean warming since the 1990s in the south is coincident with widespread acceleration of glacier retreat. We conclude that changes in ocean-induced melting are the primary cause of retreat for glaciers in this region.
Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2 °C global warming could be dangerous
We use numerical climate simulations, paleoclimate data, and modern observations to study the effect of growing ice melt from Antarctica and Greenland. Meltwater tends to stabilize the ocean column, inducing amplifying feedbacks that increase subsurface ocean warming and ice shelf melting. Cold meltwater and induced dynamical effects cause ocean surface cooling in the Southern Ocean and North Atlantic, thus increasing Earth's energy imbalance and heat flux into most of the global ocean's surface. Southern Ocean surface cooling, while lower latitudes are warming, increases precipitation on the Southern Ocean, increasing ocean stratification, slowing deepwater formation, and increasing ice sheet mass loss. These feedbacks make ice sheets in contact with the ocean vulnerable to accelerating disintegration. We hypothesize that ice mass loss from the most vulnerable ice, sufficient to raise sea level several meters, is better approximated as exponential than by a more linear response. Doubling times of 10, 20 or 40 years yield multi-meter sea level rise in about 50, 100 or 200 years. Recent ice melt doubling times are near the lower end of the 10–40-year range, but the record is too short to confirm the nature of the response. The feedbacks, including subsurface ocean warming, help explain paleoclimate data and point to a dominant Southern Ocean role in controlling atmospheric CO2, which in turn exercised tight control on global temperature and sea level. The millennial (500–2000-year) timescale of deep-ocean ventilation affects the timescale for natural CO2 change and thus the timescale for paleo-global climate, ice sheet, and sea level changes, but this paleo-millennial timescale should not be misinterpreted as the timescale for ice sheet response to a rapid, large, human-made climate forcing. These climate feedbacks aid interpretation of events late in the prior interglacial, when sea level rose to +6–9 m with evidence of extreme storms while Earth was less than 1 °C warmer than today. Ice melt cooling of the North Atlantic and Southern oceans increases atmospheric temperature gradients, eddy kinetic energy and baroclinicity, thus driving more powerful storms. The modeling, paleoclimate evidence, and ongoing observations together imply that 2 °C global warming above the preindustrial level could be dangerous. Continued high fossil fuel emissions this century are predicted to yield (1) cooling of the Southern Ocean, especially in the Western Hemisphere; (2) slowing of the Southern Ocean overturning circulation, warming of the ice shelves, and growing ice sheet mass loss; (3) slowdown and eventual shutdown of the Atlantic overturning circulation with cooling of the North Atlantic region; (4) increasingly powerful storms; and (5) nonlinearly growing sea level rise, reaching several meters over a timescale of 50–150 years. These predictions, especially the cooling in the Southern Ocean and North Atlantic with markedly reduced warming or even cooling in Europe, differ fundamentally from existing climate change assessments. We discuss observations and modeling studies needed to refute or clarify these assertions.
Projected Impacts of Antarctic Meltwater Anomalies over the Twenty-First Century
Antarctic margin and Southern Ocean surface freshening has been observed in recent decades and is projected to continue over the twenty-first century. Surface freshening due to precipitation and sea ice changes is represented in coupled climate models; however, Antarctic ice sheet/shelf meltwater contributions are not. Because Antarctic melting is projected to accelerate over the twenty-first century, this constitutes a fundamental shortcoming in present-day projections of high-latitude climate. Southern Ocean surface freshening has been shown to cause surface cooling by reducing both ocean convection and the entrainment of warm subsurface waters to the surface. Over the twenty-first century, Antarctic meltwater is expected to alter the pattern of projected surface warming as well as having other climatic effects. However, there remains considerable uncertainty in projected Antarctic meltwater amounts, and previous findings could be model dependent. Here, we use the ACCESS-ESM1.5 coupled model to investigate global climate responses to low and high Antarctic meltwater additions over the twenty-first century under a high-emissions climate scenario. Our high-meltwater simulations produce anomalous surface cooling, increased Antarctic sea ice, subsurface ocean warming, and hemispheric differences in precipitation. Our low-meltwater simulations suggest that the magnitude of surface temperature and Antarctic sea ice responses is strongly dependent on the applied meltwater amount. Taken together, these findings highlight the importance of constraining projections of Antarctic ice sheet/shelf melt to better project global surface climate changes over the twenty-first century.