Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,661 result(s) for "grape quality"
Sort by:
Future Climate Change Impacts on European Viticulture: A Review on Recent Scientific Advances
Climate change is a continuous spatiotemporal reality, possibly endangering the viability of the grapevine (Vitis vinifera L.) in the future. Europe emerges as an especially responsive area where the grapevine is largely recognised as one of the most important crops, playing a key environmental and socio-economic role. The mounting evidence on significant impacts of climate change on viticulture urges the scientific community in investigating the potential evolution of these impacts in the upcoming decades. In this review work, a first attempt for the compilation of selected scientific research on this subject, during a relatively recent time frame (2010–2020), is implemented. For this purpose, a thorough investigation through multiple search queries was conducted and further screened by focusing exclusively on the predicted productivity parameters (phenology timing, product quality and yield) and cultivation area alteration. Main findings on the potential impacts of future climate change are described as changes in grapevine phenological timing, alterations in grape and wine composition, heterogeneous effects on grapevine yield, the expansion into areas that were previously unsuitable for grapevine cultivation and significant geographical displacements in traditional growing areas. These compiled findings may facilitate and delineate the implementation of effective adaptation and mitigation strategies, ultimately potentiating the future sustainability of European viticulture.
A Review on the Observed Climate Change in Europe and Its Impacts on Viticulture
The European climate is changing displaying profound impacts on agriculture, thus strongly reaching the scientific community’s attention. In this review, the compilation of selected scientific research on the agroclimatic conditions’ changes and their impact on the productivity parameters (phenology timing, product quality and quantity) of grapevines and on the spatiotemporal characteristics of the viticultural areas are attempted for the first time. For this purpose, a thorough investigation through multiple search queries was conducted for the period (2005–2021). Overall, increasing (decreasing) trends in critical temperature (precipitation) parameters are the reality of the recent past with visible impacts on viticulture. The observed climate warming already enforces emerging phenomena related to the modification of the developmental rate (earlier phenological events, shortening of phenological intervals, lengthening of the growing season, earlier harvest), the alteration of product quality, the heterogeneous effects on grapevine yield and the emergence of new cool-climate viticulture areas highlighting the cultivation’s rebirth in the northern and central parts of the continent. The vulnerability of the wine-growing ecosystem urges the integration of innovative and sustainable solutions for confronting the impacts of climate change and safeguarding the production (quantity and quality) capacity of viticultural systems in Europe under a continuously changing environment.
The effects of plant and animal-derived aminoacid and humic acid-based biostimulants on yield and quality in the wine grape
In recent years, biostimulants, which are of great importance in sustainable viticulture, are generally applied to plants at low doses via foliar application to regulate or enhance plant physiological processes, improve product vitality, yield, and quality, and overcome stress conditions. This study was conducted in Antalya, Turkey, in 2019 and 2020, to determine the effects of different biostimulant applications on yield and quality parameters in the Öküzgözü grape variety. The experiment was set up in a randomized block design with three replications. The treatments encompassed humic acid, plant-derived amino acids, animal-derived amino acids, and their combinations (HU+PAA and HU+AAA), with a control group receiving tap water. It is evident from the analysis of two-year averages that biostimulant applications have a considerable impact on the morphological characteristics of berries, including size, as well as on cluster characteristics and yield per cluster. The biochemical quality criteria also demonstrate a clear response to biostimulant application. The highest yield (13.20 kg·plant -1 ), cluster weight (505.5 g), and 100-berry weight (608.4 g) were obtained with the HU+PAA combination. The application of HU+AAA resulted in a significant increase in anthocyanin content (1463 mg·100 g -1 FW), while the application of plant amino acids led to a notable increase in L-ascorbic acid content (8.60 mg·100 g -1 FW). Statistically significant differences were not observed between the treatments in terms of phenolic compound and flavanol contents. The creation of a heat map was informed by the data that was obtained, and principal component analysis (PCA) was subsequently performed. The findings indicated that biostimulant applications, particularly when used in combination, are efficacious in enhancing both yield and quality in the Öküzgözü grape variety.
Application of Near-Infrared Spectroscopy and Hyperspectral Imaging Combined with Machine Learning Algorithms for Quality Inspection of Grape: A Review
Grape is a fruit rich in various vitamins, and grape quality is increasingly highly concerned with by consumers. Traditional quality inspection methods are time-consuming, laborious and destructive. Near-infrared spectroscopy (NIRS) and hyperspectral imaging (HSI) are rapid, non-destructive and accurate techniques for quality inspection and safety assessment of agricultural products, which have great potential in recent years. The review summarized the applications and achievements of NIRS and HSI for the quality inspection of grapes for the last ten years. The review introduces basic principles, signal mode, data acquisition, analysis and processing of NIRS and HSI data. Qualitative and quantitative analysis were involved and compared, respectively, based on spectral features, image features and fusion data. The advantages, disadvantages and development trends of NIRS and HSI techniques in grape quality and safety inspection are summarized and discussed. The successful application of NIRS and HSI in grape quality inspection shows that many fruit inspection tasks could be assisted with NIRS and HSI.
Ecofriendly nanomaterials for controlling gray mold of table grapes and maintaining postharvest quality
Biodegradable antifungal nanomaterials are a recent novel measure against plant pathogens. In the present investigation, the synthesis and characterization of some ecofriendly nanomaterials, including silica, chitosan, and copper nanoparticles (NPs) and their combination, were carried out. Their fungicidal activity was studied in vitro and in vivo against Botrytis cinerea, the causal agent of gray mold on table grapes. In addition, the effect of those nanomaterials on physical and chemical properties of grape (TSS, TA, TSS/TA ratio and berries colour) were evaluated. Scanning electron microscopy (SEM) and analysis of DNA-binding profile were used to better understand their mechanism of action. SEM showed that chitosan and silica NPs caused inhibition of hyphal growth and/or alteration of hyphal morphology such as cell wall disruption, withering, and excessive septation. NPs interacted with DNA isolated from fungal mats: the highest concentration of chitosan and silica NPs affected DNA integrity and led to a significant degradation. A single application of chitosan or silica NPs at veraison stage was able to reduce gray mold of table grapes. Although further large scale trials are needed, the promising results of this research suggest nanomaterials compounds, i.e. silica and chitosan NPs, as effective antifungal agents for the control of gray mold of table grapes.
Hyperspectral Imaging Spectroscopy for Non-Destructive Determination of Grape Berry Total Soluble Solids and Titratable Acidity
Wine grape quality heavily influences the price received for a product. Hyperspectral imaging has the potential to provide a non-destructive technique for predicting various enological parameters. This study aims to explore the feasibility of applying hyperspectral imaging to measure the total soluble solids (TSS) and titratable acidity (TA) in wine grape berries. A normalized difference spectral index (NDSI) spectral preprocessing method was built and compared with the conventional preprocessing method: multiplicative scatter correction and Savitzky–Golay smoothing (MSC+SG). Different machine learning models were built to examine the performance of the preprocessing methods. The results show that the NDSI preprocessing method demonstrated better performance than the MSC+SG preprocessing method in different classification models, with the best model correctly classifying 93.8% of the TSS and 84.4% of the TA. In addition, the TSS can be predicted with moderate performance using support vector regression (SVR) and MSC+SG preprocessing with a root mean squared error (RMSE) of 0.523 °Brix and a coefficient of determination (R2) of 0.622, and the TA can be predicted with moderate performance using SVR and NDSI preprocessing (RMSE = 0.19%, R2 = 0.525). This study demonstrates that hyperspectral imaging data and NDSI preprocessing have the potential to be a method for grading wine grapes for producing quality wines.
Long-term in vitro culture of grape berries and its application to assess the effects of sugar supply on anthocyanin accumulation
A long-term in vitro culture system of intact grape berries was developed which can serve to study the response of berry composition to various trophic factors, shown by sugar regulation of anthocyanin accumulation.
Application of Synephrine to Grape Increases Anthocyanin via Production of Hydrogen Peroxide, Not Phytohormones
Global warming has caused such problems as the poor coloration of grape skin and the decreased production of high-quality berries. We investigated the effect of synephrine (Syn) on anthocyanin accumulation. Anthocyanin accumulation in cultured grape cells treated with Syn at concentrations of 1 mM or higher showed no significant difference, indicating that the accumulation was concentration-independent. On the other hand, anthocyanin accumulation was dependent on the compound used for treatment. The sugar/acid ratio of the juice from berries treated with Syn did not differ from the control. The expression of anthocyanin-biosynthesis-related genes, but not phytohormones, was increased by the treatment with Syn at 24 h or later. The Syn treatment of cultured cells increased SOD3 expression and hydrogen peroxide (H2O2) production from 3 to 24 h after treatment. Subsequently, the expression of CAT and APX6 encoding H2O2-scavenging enzymes was also increased. Treatment of cultured cells with Syn and H2O2 increased the expression of the H2O2-responsive gene Chit4 and the anthocyanin-biosynthesis-related genes mybA1 and UFGT 4 days after the treatment and increased anthocyanin accumulation 7 days after the treatment. On the other hand, the treatment of berries with Syn and H2O2 increased anthocyanin accumulation after 9 days. These results suggest that Syn increases anthocyanin accumulation through H2O2 production without changing phytohormone biosynthesis. Syn is expected to improve grape skin coloration and contribute to high-quality berry production.
Effectiveness of Management Zones Delineated from UAV and Sentinel-2 Data for Precision Viticulture Applications
How accurately do Sentinel-2 (S2) images describe vine row spatial variability? Can they produce effective management zones (MZs) for precision viticulture? S2 and UAV datasets acquired over two years for different drip-irrigated vineyards in the Colli Morenici region (northern Italy) were used to assess the actual need to use UAV-NDVI maps instead of S2 images to obtain effective MZ maps. First, the correlation between S2 and UAV-NDVI values was investigated. Secondly, contingency matrices and dichotomous tables (considering UAV-MZ maps as a reference) were developed to compare MZ maps produced using S2 and UAV imagery. Moreover, data on grape production and quality were analyzed through linear discrimination analyses (LDA) to evaluate the effectiveness of S2-MZs and UAV-MZs to explain spatial variability in yield and quality data. The outcomes highlight that S2 images can be quite good tools to manage fertilization based on the within-field vigor variability, of which they capture the main features. Nevertheless, as S2-MZs with low and high vigor were over-estimated, S2-MZ maps cannot be used for high-accuracy input management. From the LDA results, the UAV-MZs appeared slightly more performant than the S2-MZs in explaining the variability in grape quality and yield, especially in the case of low-vigor MZs.
Irrigation Regime Effects on Phenolic Composition of Portuguese Grape Varieties
Climate change has led to increased extreme weather events, such as severe droughts and intense rainfall, with regions in Portugal, like Alentejo and Algarve, being particularly affected. Understanding the influence of water availability in the concentration of phenolic compounds in autochthonous varieties could be an important tool to know how these varieties adapt to water scarcity. This work has been carried out with the aim to analyze the profile of phenolic compounds by HPLC-DAD in four Portuguese grape varieties (Tinta Gorda, Tinta Miúda, Tinta Caiada, and Moreto), cultivated under three irrigation regimes (water comfort, moderate water deficit, and rainfed). The results reveal that Tinta Gorda, Tinta Miúda, and Tinta Caiada varieties exhibit the higher concentrations of phenolic compounds under rainfed conditions. Among these, Tinta Miúda and Tinta Caiada stand out as the most promising varieties in terms of adaptability to water scarcity.