Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,265
result(s) for
"gravitropism"
Sort by:
Auxin-mediated statolith production for root gravitropism
by
Xiao, Guanghui
,
Wang, Guodong
,
Yu, Jianing
in
Arabidopsis
,
Arabidopsis - physiology
,
Arabidopsis Proteins - genetics
2019
Root gravitropism is one of the most important processes allowing plant adaptation to the land environment. Auxin plays a central role in mediating root gravitropism, but how auxin contributes to gravitational perception and the subsequent response are still unclear.
Here, we showed that the local auxin maximum/gradient within the root apex, which is generated by the PIN directional auxin transporters, regulates the expression of three key starch granule synthesis genes, SS4, PGM and ADG1, which in turn influence the accumulation of starch granules that serve as a statolith perceiving gravity.
Moreover, using the cvxIAA-ccvTIR1 system, we also showed that TIR1-mediated auxin signaling is required for starch granule formation and gravitropic response within root tips. In addition, axr3 mutants showed reduced auxin-mediated starch granule accumulation and disruption of gravitropism within the root apex.
Our results indicate that auxin-mediated statolith production relies on the TIR1/AFB-AXR3-mediated auxin signaling pathway. In summary, we propose a dual role for auxin in gravitropism: the regulation of both gravity perception and response.
Journal Article
Brassinosteroid signaling delimits root gravitropism via sorting of the Arabidopsis PIN2 auxin transporter
2019
Arabidopsis
PIN2 protein directs transport of the phytohormone auxin from the root tip into the root elongation zone. Variation in hormone transport, which depends on a delicate interplay between PIN2 sorting to and from polar plasma membrane domains, determines root growth. By employing a constitutively degraded version of PIN2, we identify brassinolides as antagonists of PIN2 endocytosis. This response does not require de novo protein synthesis, but involves early events in canonical brassinolide signaling. Brassinolide-controlled adjustments in PIN2 sorting and intracellular distribution governs formation of a lateral PIN2 gradient in gravistimulated roots, coinciding with adjustments in auxin signaling and directional root growth. Strikingly, simulations indicate that PIN2 gradient formation is no prerequisite for root bending but rather dampens asymmetric auxin flow and signaling. Crosstalk between brassinolide signaling and endocytic PIN2 sorting, thus, appears essential for determining the rate of gravity-induced root curvature via attenuation of differential cell elongation.
Brassinosteroid signaling can regulate auxin transport by influencing the sorting and accumulation of PIN auxin efflux carriers. Here, the authors show that in roots, brassinolide can modulate vacuolar degradation and endocytic sorting of PIN2, delimiting root curvature in response to gravity.
Journal Article
Reactive Oxygen Species Tune Root Tropic Responses
by
Krieger, Gat
,
Fromm, Hillel
,
Shkolnik, Doron
in
Antioxidants - pharmacology
,
Arabidopsis - genetics
,
Arabidopsis - metabolism
2016
The default growth pattern of primary roots of land plants is directed by gravity. However, roots possess the ability to sense and respond directionally to other chemical and physical stimuli, separately and in combination. Therefore, these root tropic responses must be antagonistic to gravitropism. The role of reactive oxygen species (ROS) in gravitropism of maize and Arabidopsis (Arabidopsis thaliana) roots has been previously described. However, which cellular signals underlie the integration of the different environmental stimuli, which lead to an appropriate root tropic response, is currently unknown. In gravity-responding roots, we observed, by applying the ROS-sensitive fluorescent dye dihydrorhodamine-123 and confocal microscopy, a transient asymmetric ROS distribution, higher at the concave side of the root. The asymmetry, detected at the distal elongation zone, was built in the first 2 h of the gravitropic response and dissipated after another 2 h. In contrast, hydrotropically responding roots show no transient asymmetric distribution of ROS. Decreasing ROS levels by applying the antioxidant ascorbate, or the ROS-generation inhibitor diphenylene iodonium attenuated gravitropism while enhancing hydrotropism. Arabidopsis mutants deficient in Ascorbate Peroxidase 1 showed attenuated hydrotropic root bending. Mutants of the root-expressed NADPH oxidase RBOH C, but not rbohD, showed enhanced hydrotropism and less ROS in their roots apices (tested in tissue extracts with Amplex Red). Finally, hydrostimulation prior to gravistimulation attenuated the gravistimulated asymmetric ROS and auxin signals that are required for gravity-directed curvature. We suggest that ROS, presumably H₂O₂, function in tuning root tropic responses by promoting gravitropism and negatively regulating hydrotropism.
Journal Article
LAZY3 interacts with LAZY2 to regulate tiller angle by modulating shoot gravity perception in rice
2023
Summary Starch biosynthesis in gravity‐sensing tissues of rice shoot determines the magnitude of rice shoot gravitropism and thus tiller angle. However, the molecular mechanism underlying starch biosynthesis in rice gravity‐sensing tissues is still unclear. We characterized a novel tiller angle gene LAZY3 (LA3) in rice through map‐based cloning. Biochemical, molecular and genetic studies further demonstrated the essential roles of LA3 in gravity perception of rice shoot and tiller angle control. The shoot gravitropism and lateral auxin transport were defective in la3 mutant upon gravistimulation. We showed that LA3 encodes a chloroplast‐localized tryptophan‐rich protein associated with starch granules via Tryptophan‐rich region (TRR) domain. Moreover, LA3 could interact with the starch biosynthesis regulator LA2, determining starch granule formation in shoot gravity‐sensing tissues. LA3 and LA2 negatively regulate tiller angle in the same pathway acting upstream of LA1 to mediate asymmetric distribution of auxin. Our study defined LA3 as an indispensable factor of starch biosynthesis in rice gravity‐sensing tissues that greatly broadens current understanding in the molecular mechanisms underlying the starch granule formation in gravity‐sensing tissues, and provides new insights into the regulatory mechanism of shoot gravitropism and rice tiller angle.
Journal Article
Developmental control of plant Rho GTPase nano-organization by the lipid phosphatidylserine
by
Fiche, Jean-Bernard
,
Maneta-Peyret, Lilly
,
Armengot, Laia
in
Arabidopsis
,
Arabidopsis - drug effects
,
Arabidopsis - enzymology
2019
Rho guanosine triphosphatases (GTPases) are master regulators of cell signaling, but how they are regulated depending on the cellular context is unclear.We found that the phospholipid phosphatidylserine acts as a developmentally controlled lipid rheostat that tunes Rho GTPase signaling in Arabidopsis. Live superresolution single-molecule imaging revealed that the protein Rho of Plants 6 (ROP6) is stabilized by phosphatidylserine into plasma membrane nanodomains, which are required for auxin signaling. Our experiments also revealed that the plasma membrane phosphatidylserine content varies during plant root development and that the level of phosphatidylserine modulates the quantity of ROP6 nanoclusters induced by auxin and hence downstream signaling, including regulation of endocytosis and gravitropism. Our work shows that variations in phosphatidylserine levels are a physiological process that may be leveraged to regulate small GTPase signaling during development.
Journal Article
Mechanosensing antagonizes ethylene signaling to promote root gravitropism in rice
2025
Root gravitropism relies on gravity perception by the root cap and requires tightly regulated phytohormone signaling. Here, we isolate a rice mutant that displays root coiling in hydroponics but normal gravitropic growth in soil. We identify
COILING ROOT IN WATER 1
(
CRW1
) encoding an ETHYLENE-INSENSITIVE3 (EIN3)-BINDING F-BOX PROTEIN (OsEBF1) as the causative gene for the mutant phenotype. We show that the OsCRW1-EIN3 LIKE 1 and 2 (OsEIL1/2)-ETHYLENE RESPONSE FACTOR 82 (OsERF82) module controls the production of reactive oxygen species in the root tip, subsequently impacting root cap stability, polar localization of PIN-FORMED 2 (OsPIN2), symmetric distribution of auxin, and ultimately gravitropic growth of roots. The OsEIL1/2-OsERF82 ethylene signaling module is effectively impeded by applying gentle mechanical resistance to root tips, including growing in water-saturated paddy soil. We further show that mechanosensing-induced calcium signaling is required and sufficient for antagonizing the ethylene signaling pathway. This study has revealed previously unanticipated interplay among ethylene, auxin, and mechanosensing in the control of plant gravitropism.
This study demonstrated that amplified ethylene signaling impairs gravitropic growth of rice roots by affecting root cap stability and OsPIN2 polar localization, whereas mechanosensing-induced calcium signaling antagonizes ethylene signaling to safeguard gravitropism.
Journal Article
LAZY2 controls rice tiller angle through regulating starch biosynthesis in gravity-sensing cells
2021
• Rice (Oryza sativa) tiller angle is a key component for achieving ideal plant architecture and higher grain yield. However, the molecular mechanism underlying rice tiller angle remains elusive.
• We characterized a novel rice tiller angle mutant lazy2 (la2) and isolated the causative gene LA2 through map-based cloning. Biochemical, molecular and genetic studies were conducted to elucidate the LA2-involved tiller angle regulatory mechanism.
• The la2 mutant shows large tiller angle with impaired shoot gravitropism and defective asymmetric distribution of auxin. We found that starch granules in amyloplasts are completely lost in the gravity-sensing leaf sheath base cells of la2, whereas the seed development is not affected. LA2 encodes a novel chloroplastic protein that can interact with the starch biosynthetic enzyme Oryza sativa plastidic phosphoglucomutase (OspPGM) to regulate starch biosynthesis in rice shoot gravity-sensing cells. Genetic analysis showed that LA2 regulates shoot gravitropism and tiller angle by acting upstream of LA1 to mediate lateral auxin transport.
• Our studies revealed that LA2 acts as a novel regulator of rice tiller angle by specifically regulating starch biosynthesis in gravity-sensing cells, and established the framework of the starch-statolith-dependent rice tiller angle regulatory pathway, providing new insights into the rice tiller angle regulatory network.
Journal Article
Maize LAZY1 Mediates Shoot Gravitropism and Inflorescence Development through Regulating Auxin Transport, Auxin Signaling, and Light Response
by
Dong, Zhaobin
,
Zhang, Xiaolan
,
Jiang, Chuan
in
Amino Acid Sequence
,
Auxins
,
Biological and medical sciences
2013
Auxin is a plant hormone that plays key roles in both shoot gravitropism and inflorescence development. However, these two processes appear to be parallel and to be regulated by distinct players. Here, we report that the maize (Zea mays) prostrate stem1 mutant, which is allelic to the classic mutant lazy plant1 (la1), displays prostrate growth with reduced shoot gravitropism and defective inflorescence development. Map-based cloning identified maize ZmLA1 as the functional ortholog of LAZY1 in rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana). It has a unique role in inflorescence development and displays enriched expression in reproductive organs such as tassels and ears. Transcription of ZmLA1 responds to auxin and is repressed by light. Furthermore, ZmLA1 physically interacts with a putative auxin transport regulator in the plasma membrane and a putative auxin signaling protein in the nucleus. RNA-SEQ data showed that dozens of auxin transport, auxin response, and light signaling genes were differentially expressed in la1 mutant stems. Therefore, ZmLA1 might mediate the cross talk between shoot gravitropism and inflorescence development by regulating auxin transport, auxin signaling, and probably light response in maize.
Journal Article
TAC4 controls tiller angle by regulating the endogenous auxin content and distribution in rice
by
Sun, Xianyou
,
Li, Hua
,
Jiang, Jiahuang
in
Acetic acid
,
auxin content and distribution
,
biotechnology
2021
Tiller angle, an important component of plant architecture, greatly influences the grain yield of rice (Oryza sativa L.). Here, we identified Tiller Angle Control 4 (TAC4) as a novel regulator of rice tiller angle. TAC4 encodes a plant‐specific, highly conserved nuclear protein. The loss of TAC4 function leads to a significant increase in the tiller angle. TAC4 can regulate rice shoot gravitropism by increasing the indole acetic acid content and affecting the auxin distribution. A sequence analysis revealed that TAC4 has undergone a bottleneck and become fixed in indica cultivars during domestication and improvement. Our findings facilitate an increased understanding of the regulatory mechanisms of tiller angle and also provide a potential gene resource for the improvement of rice plant architecture.
Journal Article
Evolution of fast root gravitropism in seed plants
2019
An important adaptation during colonization of land by plants is gravitropic growth of roots, which enabled roots to reach water and nutrients, and firmly anchor plants in the ground. Here we provide insights into the evolution of an efficient root gravitropic mechanism in the seed plants. Architectural innovation, with gravity perception constrained in the root tips along with a shootward transport route for the phytohormone auxin, appeared only upon the emergence of seed plants. Interspecies complementation and protein domain swapping revealed functional innovations within the PIN family of auxin transporters leading to the evolution of gravitropism-specific PINs. The unique apical/shootward subcellular localization of PIN proteins is the major evolutionary innovation that connected the anatomically separated sites of gravity perception and growth response via the mobile auxin signal. We conclude that the crucial anatomical and functional components emerged hand-in-hand to facilitate the evolution of fast gravitropic response, which is one of the major adaptations of seed plants to dry land.
Root gravitropism anchors land plants to the ground and enables water uptake. Here, Zhang et al. define polar targeting of PIN2-like proteins as a major evolutionary innovation promoting shootward auxin transport and faster gravitropic responses of seed plants compared to basal vascular relatives.
Journal Article