Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
51,416 result(s) for "group effect"
Sort by:
Novel Tetrahydro-1,2,4triazolo3,4-aisoquinoline Chalcones Suppress Breast Carcinoma through Cell Cycle Arrests and Apoptosis
Chalcones are interesting anticancer drug candidates which have attracted much interest due to their unique structure and their extensive biological activity. Various functional modifications in chalcones have been reported, along with their pharmacological properties. In the current study, novel chalcone derivatives with the chemical base of tetrahydro-[1,2,4]triazolo[3,4-a]isoquinolin-3-yl)-3-arylprop-2-en-1-one were synthesized, and the structure of their molecules was confirmed through NMR spectroscopy. The antitumor activity of these newly synthesized chalcone derivatives was tested on mouse (Luc-4T1) and human (MDA-MB-231) breast cancer cell lines. The antiproliferative effect was evaluated through SRB screening and the MTT assay after 48 h of treatment at different concentrations. Interestingly, among the tested chalcone derivatives, chalcone analogues with a methoxy group were found to have significant anticancer activity and displayed gradient-dependent inhibition against breast cancer cell proliferation. The anticancer properties of these unique analogues were examined further by cytometric analysis of the cell cycle, quantitative PCR, and the caspases-Glo 3/7 assay. Chalcone methoxy derivatives showed the capability of cell cycle arrest and increased Bax/Bcl2 mRNA ratios as well as caspases 3/7 activity. The molecular docking analysis suggests that these chalcone methoxy derivatives may inhibit anti-apoptotic proteins, particularly cIAP1, BCL2, and EGFRK proteins. In conclusion, our findings confirm that chalcone methoxy derivatives could be considered to be potent drug candidates against breast cancer.
Group-size-mediated habitat selection and group fusion-fission dynamics of bison under predation risk
For gregarious animals the cost-benefit trade-offs that drive habitat selection may vary dynamically with group size, which plays an important role in foraging and predator avoidance strategies. We examined how habitat selection by bison (Bison bison) varied as a function of group size and interpreted these patterns by testing whether habitat selection was more strongly driven by the competing demands of forage intake vs. predator avoidance behavior. We developed an analytical framework that integrated group size into resource selection functions (RSFs). These group-size-dependent RSFs were based on a matched case-control design and were estimated using conditional logistic regression (mixed and population-averaged models). Fitting RSF models to bison revealed that bison groups responded to multiple aspects of landscape heterogeneity and that selection varied seasonally and as a function of group size. For example, roads were selected in summer, but not in winter. Bison groups avoided areas of high snow water equivalent in winter. They selected areas composed of a large proportion of meadow area within a 700-m radius, and within those areas, bison selected meadows. Importantly, the strength of selection for meadows varied as a function of group size, with stronger selection being observed in larger groups. Hence the bison-habitat relationship depended in part on the dynamics of group formation and division. Group formation was most likely in meadows. In contrast, risk of group fission increased when bison moved into the forest and was higher during the time of day when movements are generally longer and more variable among individuals. We also found that stronger selection for meadows by large rather than small bison groups was caused by longer residence time in individual meadows by larger groups and that departure from meadows appears unlikely to result from a depression in food intake rate. These group-size-dependent patterns were consistent with the hypothesis that avoidance of predation risk is the strongest driver of habitat selection.
Removal of Trithiocarbonyl End Group of RAFT-Polymerized Poly(stearyl acrylate) and Effect of the End Group on Thermal and Structural Properties
The effect of a long alkyl end group on the thermal and structural properties of RAFT (reversible addition-fragmentation chain transfer)-polymerized poly(stearyl acrylate) (PSA) was investigated. RAFT-polymerized PSA was prepared using 2-cyano-2-[(dodecylsulfanylthiocarbonyl) sulfanyl] propane (CDTP) with long alkyl group as a chain transfer agent and azobisisobutyronitrile (AIBN) as an initiator. The RAFT polymerization resulted in the polymerized structure having trithiocarbonyl (TTC) at one end and isobutyronitrile at the other end. RAFT-polymerized PSA was prepared with two different molecular weights. The TTC end group was replaced by isobutyronitrile using radical reaction with AIBN through optimization of the conditions, which resulted in isobutyronitrile at both ends. The effect of the end group on the thermal and structural properties was investigated using differential scanning calorimetry and X-ray diffraction, and the results indicated that the long alkyl group from TTC lowers the melting point and semi-crystalline structure in the case of low molecular weight PSA.
Effect of Relative Stiffness of Pile and Soil on Pile Group Effect
Pile groups are designed to sustain complex loads in various engineering. During the design of a pile group, the obvious pile group effect should be considered for closely spaced pile groups. However, the group effect considered by different scholars varies, which makes it hard for engineers to consider the pile group effect for the design of a pile group. In this study, the finite element (FE) method is proposed to advance our understanding of the variations of pile group effects developed by different researchers, based on the concept of soil–pile relative stiffness. The relationship between soil–pile relative stiffness and normalized lateral load–displacement curves and bending moment profile response of the pile group is investigated. The results show that the pile group effect increases with the increase in soil–pile relative stiffness; the pile group effect increases with the decrease in pile spacing, increases with the increase in of number of piles in the group, and is significantly affected by pile group arrangement as well.
Experimental Study of Negative Skin Friction of Pile Group Foundations for Offshore Wind Turbines on Artificial Islands
Constructing offshore wind turbines on artificial islands is considered a viable option, but negative skin friction (NSF) is a significant adverse factor that cannot be ignored. The NSF adversely affects the bearing capacity of pile foundations. Currently, design methods for studying the impact of NSF group effects mainly rely on empirical approaches. Moreover, existing experimental studies do not simulate the NSF experienced by offshore wind turbine pile groups on artificial islands. In order to further explore the impact of pile group effects on NSF experienced by offshore wind turbine pile foundations on artificial islands, this study conducted indoor model tests on single piles and 3 × 3 rectangular pile groups in sandy soil under uniformly distributed loading on surrounding soil. The experiment measured the settlement of piles at various positions within single piles and rectangular pile groups, as well as the settlement of the soil surrounding the piles and the NSF. Through calculations, the experiment determined the neutral points and NSF group effect coefficients for each pile. The results indicate that densely spaced pile groups are advantageous in reducing settlement of the surrounding soil, thereby mitigating the adverse effects of NSF. Due to the influence of pile group effects, different positions within the group experience varying degrees of NSF. Consequently, in practical engineering applications, settlement of both the pile groups and the surrounding soil should be calculated separately. Furthermore, design considerations for the uplift forces and neutral points of piles at different positions within the pile group should adhere to distinct standards.
A Systematic Experimental Study on the Group Effect of Dragloads in Pile Foundations
There is a paucity of systematic experimental studies on the group effect of dragloads in pile foundations. This paper reports on a series of 1-g model tests that were conducted on single piles as well as 2 × 2 and 3 × 3 pile groups with various pile spacings to investigate the influence of soil compressibility, pile installation method, pile end constraint, and pile spacing on dragload development in the piles. The results indicate that soil compressibility significantly influences the magnitude of dragloads developed in single piles and piles in a group. However, the effect of soil compressibility on the group effect (a measure of dragload reduction) is negligible. Pile spacing is the most significant factor that influences group effect, followed by the number and position of piles. The group effect can reach 50% for a spacing of 3D (where D denotes pile diameter), but becomes negligible for a spacing of 7D. The influence of pile end constraint and pile installation method on group effect is comparatively insignificant. Although group effects of the suspending piles are marginally lower than those of end-bearing piles under otherwise identical conditions, the dragloads on the suspending piles correspond to tensile forces and are detrimental to concrete piles.
Evaluation on influences of inertial mass on seismic responses and structure-soil interactions of pile-soil-piers
This research is to assess the influences of the inertial mass from the girder on the dynamic characteristic, dynamic response, and structure-soil interaction of a pile-soil-pier subsystem in a scale-model of a cable-stayed bridge. Therefore, both connection configurations between the pile-soil-pier and girder, including the sliding and fixed connections, were designed to present various inertial mass from the superstructure delivered to the pile-soil-pier. The pile-soil-pier supported by a 3 × 3 pile-group in mixed soil placed in a shear box was tested using shaking tables. The dynamic characteristics, seismic responses, inertial interactions, and pile group effects of the pile-soil-pier between the sliding and fixed connections were analyzed under three input motions with different shaking amplitudes. These results showed that more inertial mass from the girder significantly increased the reinforcement strain and bending moment at the column bottom and pile top, displacement at the column top, inertial interaction effects, and pile group effects of the pile-soil-pier due to the sliding connection changing to the fixed connection. The inertial mass increment from the girder noticeably decreased the peak accelerations of the column of the pile-soil-pier when subjected to three input motions with different amplitudes. However, the inertial mass insignificantly affected the accelerations of the pile and free-soil. Therefore, the corresponding kinematic interaction effects were almost unaffected by the inertial mass. Additionally, the evident pile group effects were observed in the sliding and fixed connections between the pile-soil-pier and girder. The numerical model could approximately reproduce the macroscopic seismic responses of the pile-soil-piers with sliding and fixed connections and capture the typical response variations induced by the connection configuration change.
Gut Microbiota in Military International Travelers with Doxycycline Malaria Prophylaxis: Towards the Risk of a Simpson Paradox in the Human Microbiome Field
Dysbiosis, developed upon antibiotic administration, results in loss of diversity and shifts in the abundance of gut microbes. Doxycycline is a tetracycline antibiotic widely used for malaria prophylaxis in travelers. We prospectively studied changes in the fecal microbiota of 15 French soldiers after a 4-month mission to Mali with doxycycline malaria prophylaxis, compared to changes in the microbiota of 28 soldiers deployed to Iraq and Lebanon without doxycycline. Stool samples were collected with clinical data before and after missions, and 16S rRNA sequenced on MiSeq targeting the V3-V4 region. Doxycycline exposure resulted in increased alpha-biodiversity and no significant beta-dissimilarities. It led to expansion in Bacteroides, with a reduction in Bifidobacterium and Lactobacillus, as in the group deployed without doxycycline. Doxycycline did not alter the community structure and was specifically associated with a reduction in Escherichia and expression of Rothia. Differences in the microbiota existed at baseline between military units but not within the studied groups. This group-effect highlighted the risk of a Simpson paradox in microbiome studies.
Ultimate Lateral Bearing Capacity and Group Effect of Belled Wedge Pile Groups
Pile foundation of ports, high-voltage transmission line tower are subjected to amount of lateral loading, prediction on lateral bearing capacity is one of the most important projects in structure design. This paper pertains to the model tests on pile-soil interaction of single pile, 2 × 1 and 2 × 2 belled wedge pile groups embedded in sand under lateral load. The load versus displacement, and the soil pressures along depth surrounding piles are measured, the ultimate lateral bearing capacities and group effects of belled wedge piles are analyzed and discussed. An simplified theoretical calculation method on predicting the lateral bearing capacities of shaped pile groups with considering group pile p-y curves, and longitudinal cross-section variation are proposed. The accuracy and reliability of this developed calculation method are verified through the comparative analysis with model test results obtained in this study and previous literature. The predicted values of lateral bearing capacities have suitable agreement with the measured data. It also shows that the ultimate lateral bearing capacities of belled wedge pile group are nearly 1.8–2.0 times of those of traditional belled pile with the same concrete usage in this study’s condition.
Two's company, three's a crowd: Food and shelter limitation outweigh the benefits of group living in a shoaling fish
Identifying how density and number-dependent processes regulate populations is important for predicting population response to environmental change. Species that live in groups, such as shoaling fish, can experience both direct density-dependent mortality through resource limitation and inverse number-dependent mortality via increased feeding rates and predator evasion in larger groups. To investigate the role of these processes in a temperate reef fish population, we manipulated the density and group size of the shoaling species Trachinops caudimaculatus on artificial patch reefs at two locations with different predator fields in Port Phillip Bay, Australia. We compared mortality over four weeks to estimates of predator abundance and per capita availability of refuge and food to identify mechanisms for density or number dependence. Mortality was strongly directly density dependent throughout the experiment, regardless of the dominant predator group; however, the limiting resource driving this effect changed over time. In the first two weeks when densities were highest, density-dependent mortality was best explained by refuge competition and the abundance of benthic predators. During the second two weeks, food competition best explained the pattern of mortality. We detected no effect of group size at either location, even where pelagic-predator abundance was high. Overall, direct density effects were much stronger than those of group size, suggesting little survival advantage to shoaling on isolated patch reefs where resource competition is high. This study is the first to observe a temporal shift in density-dependent mechanisms in reef fish, and the first to observe food limitation on short temporal scales. Food competition may therefore be an important regulator of postsettlement reef fish cohorts after the initial intense effects of refuge limitation and predation.