Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3,482
result(s) for
"guanosine triphosphate"
Sort by:
Cryo-EM of elongating ribosome with EF-Tu•GTP elucidates tRNA proofreading
by
Demo, Gabriel
,
Loveland, Anna B.
,
Korostelev, Andrei A.
in
101/28
,
631/337/574/1789
,
631/45/500
2020
Ribosomes accurately decode mRNA by proofreading each aminoacyl-tRNA that is delivered by the elongation factor EF-Tu
1
. To understand the molecular mechanism of this proofreading step it is necessary to visualize GTP-catalysed elongation, which has remained a challenge
2
–
4
. Here we use time-resolved cryogenic electron microscopy to reveal 33 ribosomal states after the delivery of aminoacyl-tRNA by EF-Tu•GTP. Instead of locking cognate tRNA upon initial recognition, the ribosomal decoding centre dynamically monitors codon–anticodon interactions before and after GTP hydrolysis. GTP hydrolysis enables the GTPase domain of EF-Tu to extend away, releasing EF-Tu from tRNA. The 30S subunit then locks cognate tRNA in the decoding centre and rotates, enabling the tRNA to bypass 50S protrusions during accommodation into the peptidyl transferase centre. By contrast, the decoding centre fails to lock near-cognate tRNA, enabling the dissociation of near-cognate tRNA both during initial selection (before GTP hydrolysis) and proofreading (after GTP hydrolysis). These findings reveal structural similarity between ribosomes in initial selection states
5
,
6
and in proofreading states, which together govern the efficient rejection of incorrect tRNA.
Time-resolved cryogenic electron microscopy structures of a ribosome during the delivery of aminoacyl-tRNA by EF-Tu•GTP capture 33 ribosomal states, enabling visualization of the initial selection, proofreading and peptidyl transfer stages.
Journal Article
Time-resolved cryo-EM of G-protein activation by a GPCR
2024
G-protein-coupled receptors (GPCRs) activate heterotrimeric G proteins by stimulating guanine nucleotide exchange in the Gα subunit
1
. To visualize this mechanism, we developed a time-resolved cryo-EM approach that examines the progression of ensembles of pre-steady-state intermediates of a GPCR–G-protein complex. By monitoring the transitions of the stimulatory G
s
protein in complex with the β
2
-adrenergic receptor at short sequential time points after GTP addition, we identified the conformational trajectory underlying G-protein activation and functional dissociation from the receptor. Twenty structures generated from sequential overlapping particle subsets along this trajectory, compared to control structures, provide a high-resolution description of the order of main events driving G-protein activation in response to GTP binding. Structural changes propagate from the nucleotide-binding pocket and extend through the GTPase domain, enacting alterations to Gα switch regions and the α5 helix that weaken the G-protein–receptor interface. Molecular dynamics simulations with late structures in the cryo-EM trajectory support that enhanced ordering of GTP on closure of the α-helical domain against the nucleotide-bound Ras-homology domain correlates with α5 helix destabilization and eventual dissociation of the G protein from the GPCR. These findings also highlight the potential of time-resolved cryo-EM as a tool for mechanistic dissection of GPCR signalling events.
Time-resolved cryo-EM is used to capture structural transitions during G-protein activation stimulated by a G-protein-coupled receptor.
Journal Article
Mitochondria–lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis
2018
Formation of inter-organelle contacts between mitochondria and lysosomes, regulated by lysosomal RAB7 GTP hydrolysis, allows for bidirectional regulation of mitochondrial and lysosomal dynamics.
Contacts inside cell walls
Cellular organelles such as mitochondria and lysosomes are dynamic entities that communicate with each other not just through vesicular trafficking but also by direct, albeit transient, contact between different organelles. Dimitri Krainc and colleagues report the existence of inter-organelle contacts between mitochondria and lysosomes—a phenomenon that seems to be independent of the association between damaged mitochondria and lysosomes in the context of the degradative process of mitophagy. The authors also identify organelle-specific molecules that mediate the tethering between these two organelles and demonstrate that lysosome–mitochondrion contacts allow bidirectional regulation of the dynamics of these organelles.
Both mitochondria and lysosomes are essential for maintaining cellular homeostasis, and dysfunction of both organelles has been observed in multiple diseases
1
,
2
,
3
,
4
. Mitochondria are highly dynamic and undergo fission and fusion to maintain a functional mitochondrial network, which drives cellular metabolism
5
. Lysosomes similarly undergo constant dynamic regulation by the RAB7 GTPase
1
, which cycles from an active GTP-bound state into an inactive GDP-bound state upon GTP hydrolysis. Here we have identified the formation and regulation of mitochondria–lysosome membrane contact sites using electron microscopy, structured illumination microscopy and high spatial and temporal resolution confocal live cell imaging. Mitochondria–lysosome contacts formed dynamically in healthy untreated cells and were distinct from damaged mitochondria that were targeted into lysosomes for degradation
6
,
7
. Contact formation was promoted by active GTP-bound lysosomal RAB7, and contact untethering was mediated by recruitment of the RAB7 GTPase-activating protein TBC1D15 to mitochondria by FIS1 to drive RAB7 GTP hydrolysis and thereby release contacts. Functionally, lysosomal contacts mark sites of mitochondrial fission, allowing regulation of mitochondrial networks by lysosomes, whereas conversely, mitochondrial contacts regulate lysosomal RAB7 hydrolysis via TBC1D15. Mitochondria–lysosome contacts thus allow bidirectional regulation of mitochondrial and lysosomal dynamics, and may explain the dysfunction observed in both organelles in various human diseases.
Journal Article
Time-resolved cryo-EM visualizes ribosomal translocation with EF-G and GTP
by
Hou, Ya-Ming
,
Demo, Gabriel
,
Loveland, Anna B.
in
101/28
,
631/337/574/1789
,
631/535/1258/1259
2021
During translation, a conserved GTPase elongation factor—EF-G in bacteria or eEF2 in eukaryotes—translocates tRNA and mRNA through the ribosome. EF-G has been proposed to act as a flexible motor that propels tRNA and mRNA movement, as a rigid pawl that biases unidirectional translocation resulting from ribosome rearrangements, or by various combinations of motor- and pawl-like mechanisms. Using time-resolved cryo-EM, we visualized GTP-catalyzed translocation without inhibitors, capturing elusive structures of ribosome•EF-G intermediates at near-atomic resolution. Prior to translocation, EF-G binds near peptidyl-tRNA, while the rotated 30S subunit stabilizes the EF-G GTPase center. Reverse 30S rotation releases Pi and translocates peptidyl-tRNA and EF-G by ~20 Å. An additional 4-Å translocation initiates EF-G dissociation from a transient ribosome state with highly swiveled 30S head. The structures visualize how nearly rigid EF-G rectifies inherent and spontaneous ribosomal dynamics into tRNA-mRNA translocation, whereas GTP hydrolysis and Pi release drive EF-G dissociation.
EF-G drives ribosomal translocation along mRNA. Time-resolved cryo-EM captured translocation with EF-G•GTP—without inhibitors—revealing how EF-G uses ribosome fluctuations to drive translocation and GTP hydrolysis to leave at the right moment.
Journal Article
Structural transitions in the GTP cap visualized by cryo-electron microscopy of catalytically inactive microtubules
by
Surrey, Thomas
,
LaFrance, Benjamin J.
,
McCollum, Chloe O.
in
Amino acids
,
BASIC BIOLOGICAL SCIENCES
,
Biological Sciences
2022
Microtubules (MTs) are polymers of αβ-tubulin heterodimers that stochastically switch between growth and shrinkage phases. This dynamic instability is critically important for MT function. It is believed that GTP hydrolysis within the MT lattice is accompanied by destabilizing conformational changes and that MT stability depends on a transiently existing GTP cap at the growing MT end. Here, we use cryo-electron microscopy and total internal reflection fluorescence microscopy of GTP hydrolysis–deficient MTs assembled from mutant recombinant human tubulin to investigate the structure of a GTP-bound MT lattice. We find that the GTP-MT lattice of two mutants in which the catalytically active glutamate in α-tubulin was substituted by inactive amino acids (E254A and E254N) is remarkably plastic. Undecorated E254A and E254N MTs with 13 protofilaments both have an expanded lattice but display opposite protofilament twists, making these lattices distinct from the compacted lattice of wild-type GDP-MTs. End-binding proteins of the EB family have the ability to compact both mutant GTP lattices and to stabilize a negative twist, suggesting that they promote this transition also in the GTP cap of wild-type MTs, thereby contributing to the maturation of the MT structure. We also find that the MT seam appears to be stabilized in mutant GTP-MTs and destabilized in GDP-MTs, supporting the proposal that the seam plays an important role in MT stability. Together, these structures of catalytically inactive MTs add mechanistic insight into the GTP state of MTs, the stability of the GTP- and GDP-bound lattice, and our overall understanding of MT dynamic instability.
Journal Article
Structural mechanism of cytosolic DNA sensing by cGAS
by
Ablasser, Andrea
,
Witte, Gregor
,
Moldt, Manuela
in
631/250/262/2106
,
631/535/1266
,
Adenosine Triphosphate - chemistry
2013
Cytosolic DNA arising from intracellular bacterial or viral infections is a powerful pathogen-associated molecular pattern (PAMP) that leads to innate immune host defence by the production of type I interferon and inflammatory cytokines. Recognition of cytosolic DNA by the recently discovered cyclic-GMP-AMP (cGAMP) synthase (cGAS) induces the production of cGAMP to activate the stimulator of interferon genes (STING). Here we report the crystal structure of cGAS alone and in complex with DNA, ATP and GTP along with functional studies. Our results explain the broad DNA sensing specificity of cGAS, show how cGAS catalyses dinucleotide formation and indicate activation by a DNA-induced structural switch. cGAS possesses a remarkable structural similarity to the antiviral cytosolic double-stranded RNA sensor 2′-5′oligoadenylate synthase (OAS1), but contains a unique zinc thumb that recognizes B-form double-stranded DNA. Our results mechanistically unify dsRNA and dsDNA innate immune sensing by OAS1 and cGAS nucleotidyl transferases.
Cytosolic DNA arising from intracellular bacterial or viral infections induces type I interferon through activation of the DNA sensor cGAS, which catalyses the synthesis of cyclic dinucleotide which in turn activates STING; here the crystal structures of a carboxy-terminal fragment of cGAS alone and in complex with UTP and DNA–ATP–GTP complex are determined.
DNA sensing by cGAS
The mechanism of sensing and signalling of cytosolic DNA by the innate immune system is a topic of intense research interest as it is the means by which invading bacteria and viruses are detected. Cytosolic DNA is known to induce type I interferon through activation of the DNA sensor cyclic-GMP-AMP synthetase (cGAS), which catalyses the synthesis of a cyclic dinucleotide which in turn activates a protein known as STING (stimulator of interferon genes). Karl-Peter Hopfner and co-workers present the crystal structures of a C-terminal fragment of cGAS alone, in complex with UTP, and as a DNA–ATP–GTP complex. In a complementary paper [in this issue], Veit Hornung and coworkers show that the product of cGAS is distinct from previously characterized cyclic dinucleotides. Rather it is an unorthodox cyclic dinucleotide with a 2′–5′ linkage between guanosine and adenosine. This two-step synthesis of cGAMP(2′–5′) could be a focus for the development of specific inhibitors for the treatment of autoimmune diseases that engage the cGAS–STING axis.
Journal Article
KRAS G13D sensitivity to neurofibromin-mediated GTP hydrolysis
by
Stephens, Robert M.
,
Rabara, Dana
,
Simanshu, Dhirendra K.
in
Amino Acid Substitution
,
Antineoplastic Agents - pharmacology
,
Antineoplastic Agents - therapeutic use
2019
KRAS mutations occur in ∼35% of colorectal cancers and promote tumor growth by constitutively activating the mitogen-activated protein kinase (MAPK) pathway. KRAS mutations at codons 12, 13, or 61 are thought to prevent GAP protein-stimulated GTP hydrolysis and render KRAS-mutated colorectal cancers unresponsive to epidermal growth factor receptor (EGFR) inhibitors. We report here that KRAS G13-mutated cancer cells are frequently comutated with NF1 GAP but NF1 is rarely mutated in cancers with KRAS codon 12 or 61 mutations. Neurofibromin protein (encoded by the NF1 gene) hydrolyzes GTP directly in complex with KRAS G13D, and KRAS G13D-mutated cells can respond to EGFR inhibitors in a neurofibromin-dependent manner. Structures of the wild type and G13D mutant of KRAS in complex with neurofibromin (RasGAP domain) provide the structural basis for neurofibromin-mediated GTP hydrolysis. These results reveal that KRAS G13D is responsive to neurofibromin-stimulated hydrolysis and suggest that a subset of KRAS G13-mutated colorectal cancers that are neurofibromin-competent may respond to EGFR therapies.
Journal Article
Structural mechanism of GTPase-powered ribosome-tRNA movement
by
Petrychenko, Valentyn
,
Peng, Bee-Zen
,
Rodnina, Marina V.
in
101/28
,
631/337/574/1789
,
631/535/1258/1259
2021
GTPases are regulators of cell signaling acting as molecular switches. The translational GTPase EF-G stands out, as it uses GTP hydrolysis to generate force and promote the movement of the ribosome along the mRNA. The key unresolved question is how GTP hydrolysis drives molecular movement. Here, we visualize the GTPase-powered step of ongoing translocation by time-resolved cryo-EM. EF-G in the active GDP–Pi form stabilizes the rotated conformation of ribosomal subunits and induces twisting of the sarcin-ricin loop of the 23 S rRNA. Refolding of the GTPase switch regions upon Pi release initiates a large-scale rigid-body rotation of EF-G pivoting around the sarcin-ricin loop that facilitates back rotation of the ribosomal subunits and forward swiveling of the head domain of the small subunit, ultimately driving tRNA forward movement. The findings demonstrate how a GTPase orchestrates spontaneous thermal fluctuations of a large RNA-protein complex into force-generating molecular movement.
Movement of the ribosome along an mRNA requires the universally-conserved translocase (EF-G in bacteria) that couples GTP hydrolysis to directed movement. Here the authors use time-resolved Cryo-EM to visualize the GTPase-powered step on native translocating ribosomes and capture key translocation intermediates.
Journal Article
Structural basis for GTP hydrolysis and conformational change of MFN1 in mediating membrane fusion
2018
Fusion of the outer mitochondrial membrane is mediated by the dynamin-like GTPase mitofusin (MFN). Here, we determined the structure of the minimal GTPase domain (MGD) of human MFN1 in complex with GDP-BeF3–. The MGD folds into a canonical GTPase fold with an associating four-helix bundle, HB1, and forms a dimer. A potassium ion in the catalytic core engages GDP and BeF3– (GDP-BeF3–). Enzymatic analysis has confirmed that efficient GTP hydrolysis by MFN1 requires potassium. Compared to previously reported MGD structures, the HB1 structure undergoes a major conformational change relative to the GTPase domains, as they move from pointing in opposite directions to point in the same direction, suggesting that a swing of the four-helix bundle can pull tethered membranes closer to achieve fusion. The proposed model is supported by results from in vitro biochemical assays and mitochondria morphology rescue assays in MFN1-deleted cells. These findings offer an explanation for how Charcot–Marie–Tooth neuropathy type 2 A (CMT2A)-causing mutations compromise MFN-mediated fusion.
Journal Article
Severing enzymes amplify microtubule arrays through lattice GTP-tubulin incorporation
2018
Microtubules are essential intracellular polymers, built from tubulin subunits, that establish cell shape, move organelles, and segregate chromosomes during cell division. Vemu et al. show that microtubule-severing enzymes extract tubulin subunits along the microtubule shaft. This nanoscale damage is repaired by the incorporation of free tubulin, which stabilizes the microtubule against depolymerization. When extraction outpaces repair, microtubules are severed, emerging with stabilized ends composed of fresh tubulin. The severed microtubules act as templates for new microtubule growth, leading to amplification of microtubule number and mass. Thus, seemingly paradoxically, severing enzymes can increase microtubule mass in processes such as neurogenesis and mitotic spindle assembly. Science , this issue p. eaau1504 Spastin and katanin extract tubulin dimers from microtubules and amplify microtubule arrays via lattice repair. Spastin and katanin sever and destabilize microtubules. Paradoxically, despite their destructive activity they increase microtubule mass in vivo. We combined single-molecule total internal reflection fluorescence microscopy and electron microscopy to show that the elemental step in microtubule severing is the generation of nanoscale damage throughout the microtubule by active extraction of tubulin heterodimers. These damage sites are repaired spontaneously by guanosine triphosphate (GTP)–tubulin incorporation, which rejuvenates and stabilizes the microtubule shaft. Consequently, spastin and katanin increase microtubule rescue rates. Furthermore, newly severed ends emerge with a high density of GTP-tubulin that protects them against depolymerization. The stabilization of the newly severed plus ends and the higher rescue frequency synergize to amplify microtubule number and mass. Thus, severing enzymes regulate microtubule architecture and dynamics by promoting GTP-tubulin incorporation within the microtubule shaft.
Journal Article