Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
6,874 result(s) for "habitat classification"
Sort by:
Habitat classification modeling with incomplete data: pushing the habitat envelope
Habitat classification models (HCMs) are invaluable tools for species conservation, land-use planning, reserve design, and metapopulation assessments, particularly at broad spatial scales. However, species occurrence data are often lacking and typically limited to presence points at broad scales. This lack of absence data precludes the use of many statistical techniques for HCMs. One option is to generate pseudo-absence points so that the many available statistical modeling tools can be used. Traditional techniques generate pseudo-absence points at random across broadly defined species ranges, often failing to include biological knowledge concerning the species-habitat relationship. We incorporated biological knowledge of the species-habitat relationship into pseudo-absence points by creating habitat envelopes that constrain the region from which points were randomly selected. We define a habitat envelope as an ecological representation of a species, or species feature's (e.g., nest) observed distribution (i.e., realized niche) based on a single attribute, or the spatial intersection of multiple attributes. We created HCMs for Northern Goshawk (Accipiter gentilis atricapillus) nest habitat during the breeding season across Utah forests with extant nest presence points and ecologically based pseudo-absence points using logistic regression. Predictor variables were derived from 30-m USDA Landfire and 250-m Forest Inventory and Analysis (FIA) map products. These habitat-envelope-based models were then compared to null envelope models which use traditional practices for generating pseudo-absences. Models were assessed for fit and predictive capability using metrics such as kappa, threshold-independent receiver operating characteristic (ROC) plots, adjusted deviance, and cross-validation, and were also assessed for ecological relevance. For all cases, habitat envelope-based models outperformed null envelope models and were more ecologically relevant, suggesting that incorporating biological knowledge into pseudo-absence point generation is a powerful tool for species habitat assessments. Furthermore, given some a priori knowledge of the species-habitat relationship, ecologically based pseudo-absence points can be applied to any species, ecosystem, data resolution, and spatial extent.
Mapping benthic habitats in Bohai Bay, China
Marine benthic habitat mapping is increasingly recognized as an essential tool in integrating available data to inform marine ecosystem-based management. This study presents the first comprehensive and detailed marine benthic habitat map of Bohai Bay, China, utilizing a classification scheme that incorporates both abiotic and biotic features. A total of 20 distinct marine benthic habitat types were identified, reflecting the spatial distribution of reef biota, semi-terrestrial plants, ecologically and economically important benthic communities, as well as areas impacted by anthropogenic activities. This study underscores the value of habitat mapping in providing a robust scientific basis for decision-making and the sustainable utilization of coastal and marine resources in Bohai Bay.
Earth Observation and Biodiversity Big Data for Forest Habitat Types Classification and Mapping
In the light of the “Biological Diversity” concept, habitats are cardinal pieces for biodiversity quantitative estimation at a local and global scale. In Europe EUNIS (European Nature Information System) is a system tool for habitat identification and assessment. Earth Observation (EO) data, which are acquired by satellite sensors, offer new opportunities for environmental sciences and they are revolutionizing the methodologies applied. These are providing unprecedented insights for habitat monitoring and for evaluating the Sustainable Development Goals (SDGs) indicators. This paper shows the results of a novel approach for a spatially explicit habitat mapping in Italy at a national scale, using a supervised machine learning model (SMLM), through the combination of vegetation plot database (as response variable), and both spectral and environmental predictors. The procedure integrates forest habitat data in Italy from the European Vegetation Archive (EVA), with Sentinel-2 imagery processing (vegetation indices time series, spectral indices, and single bands spectral signals) and environmental data variables (i.e., climatic and topographic), to parameterize a Random Forests (RF) classifier. The obtained results classify 24 forest habitats according to the EUNIS III level: 12 broadleaved deciduous (T1), 4 broadleaved evergreen (T2) and eight needleleaved forest habitats (T3), and achieved an overall accuracy of 87% at the EUNIS II level classes (T1, T2, T3), and an overall accuracy of 76.14% at the EUNIS III level. The highest overall accuracy value was obtained for the broadleaved evergreen forest equal to 91%, followed by 76% and 68% for needleleaved and broadleaved deciduous habitat forests, respectively. The results of the proposed methodology open the way to increase the EUNIS habitat categories to be mapped together with their geographical extent, and to test different semi-supervised machine learning algorithms and ensemble modelling methods.
Biological-based habitat classification approaches promote cost-efficient monitoring
Seabed habitat maps can help facilitate the management of marine environments. A variety of approaches exist for seabed habitat classification. Most partition the environment according to physical environmental characteristics, with an assumption that resulting habitat classes are biologically meaningful. In the absence of comprehensive broad‐scale biological data, this strategy offers a logical and pragmatic way of producing habitat maps to help manage the marine environment. Across Europe, the physical based European Nature Information System (EUNIS) classification has gained wide acceptance, with maps used to classify broadscale habitats within Marine Protected Areas and to design monitoring programmes. An alternative approach to habitat classification, made possible by increasing quantities of data, is to use the biology to identify meaningful habitats. With such contrasting approaches, the question arises as to which provides the most robust and efficient basis for biological monitoring. To investigate, we compared variability in macrofaunal assemblages across different EUNIS sediment classes to those of two new habitat classification approaches developed in this study. The first of these (PHY) is based on a wide suite of physical variables known to influence the fauna. The second (BIO) uses the fauna to identify meaningful habitats. Both classifications were produced using a training dataset (9,619 grab samples) and employing k‐means clustering and Random Forest Modelling. Power analysis of test set data (4,123 samples) was used to assess the number of samples required to detect a 20% change in taxon richness and total abundance across all classes of each classification approach. Results showed that across all habitat classes, the BIO classification required 49% and 31% fewer samples to detect the change in richness and abundance than EUNIS level 4. Whilst offering some improvement on EUNIS, PHY still required many more samples than BIO. Synthesis and applications. Habitat maps based on biological data have generally lower within‐habitat variability in community metrics than those produced using physical attributes alone. As a result, biologically‐based habitat maps could offer a more cost‐effective basis for ecological monitoring. Habitat maps based on biological data have generally lower within‐habitat variability in community metrics than those produced using physical attributes alone. As a result, biologically‐based habitat maps could offer a more cost‐effective basis for ecological monitoring.
Predictive Benthic Habitat Mapping Reveals Significant Loss of Zostera marina in the Puck Lagoon, Baltic Sea, over Six Decades
This research presents a comprehensive analysis of the spatial extent and temporal change in benthic habitats within the Puck Lagoon in the southern Baltic Sea, utilizing integrated machine learning classification and multi-sourced remote sensing. Object-based image analysis was integrated with Random Forest, Support Vector Machine, and K-Nearest Neighbors algorithms for benthic habitat classification based on airborne bathymetric LiDAR (ALB), multibeam echosounder (MBES), satellite bathymetry, and high-resolution aerial photography. Ground-truth data collected by 2023 field surveys were supplemented with long temporal datasets (2010–2023) for seagrass meadow analysis. Boruta feature selection showed that geomorphometric variables (aspect, slope, and terrain ruggedness index) and optical features (ALB intensity and spectral bands) were the most significant discriminators in each classification case. Binary classification models were more effective (93.3% accuracy in the presence/absence of Zostera marina) compared to advanced multi-class models (43.3% for EUNIS Level 4/5), which identified the inherent equilibrium between ecological complexity and map validity. Change detection between contemporary and 1957 habitat data revealed extensive Zostera marina loss, with 84.1–99.0% cover reduction across modeling frameworks. Seagrass coverage declined from 61.15% of the study area to just 9.70% or 0.63%, depending on the model. Seasonal mismatch may inflate loss estimates by 5–15%, but even adjusted values (70–94%) indicate severe ecosystem degradation. Spatial exchange components exhibited patterns of habitat change, whereas net losses in total were many orders of magnitude larger than any redistribution in space. These findings recorded the most severe seagrass habitat destruction ever described within Baltic Sea ecosystems and emphasize the imperative for conservation action at the landscape level. The methodology framework provides a reproducible model for analogous change detection analysis in shallow nearshore habitats, creating critical baselines to inform restoration planning and biodiversity conservation activities. It also demonstrated both the capabilities and limitations of automatic techniques for habitat monitoring.
Aeroconservation for the Fragmented Skies
From birds to bacteria, airborne organisms face substantial anthropogenic impacts. The airspace provides essential habitat for thousands of species, some of which spend most of their lives airborne. Despite recent calls to protect the airspace, it continues to be treated as secondary to terrestrial and aquatic habitats in policy and research. Aeroconservation integrates recent advances in aeroecology and habitat connectivity, and recognizes aerial habitats and threats as analogous to their terrestrial and aquatic counterparts. Aerial habitats are poorly represented in the ecological literature and are largely absent from environmental policy, hindering protection of aerial biodiversity. Here, we provide a framework for defining aerial habitats to advance the study of aeroconservation and the protection of the airspace in environmental policy. We illustrate how current habitat definitions explicitly disadvantage aerial species relative to non‐aerial species, and review key areas of conflict between aeroconservation and human use of the airspace. Finally, we identify opportunities for research to fill critical knowledge gaps for aeroconservation. For example, aerial habitat fragmentation may impact biodiversity and ecosystem function similarly to terrestrial habitat fragmentation, and we illustrate how this can be investigated by extending existing methods and paradigms from terrestrial conservation biology up into the airspace.
Preliminary Classification of Selected Farmland Habitats in Ireland Using Deep Neural Networks
Ireland has a wide variety of farmlands that includes arable fields, grassland, hedgerows, streams, lakes, rivers, and native woodlands. Traditional methods of habitat identification rely on field surveys, which are resource intensive, therefore there is a strong need for digital methods to improve the speed and efficiency of identification and differentiation of farmland habitats. This is challenging because of the large number of subcategories having nearly indistinguishable features within the habitat classes. Heterogeneity among sites within the same habitat class is another problem. Therefore, this research work presents a preliminary technique for accurate farmland classification using stacked ensemble deep convolutional neural networks (DNNs). The proposed approach has been validated on a high-resolution dataset collected using drones. The image samples were manually labelled by the experts in the area before providing them to the DNNs for training purposes. Three pre-trained DNNs customized using the transfer learning approach are used as the base learners. The predicted features derived from the base learners were then used to train a DNN based meta-learner to achieve high classification rates. We analyse the obtained results in terms of convergence rate, confusion matrices, and ROC curves. This is a preliminary work and further research is needed to establish a standard technique.
Remote Sensing for Mapping Natura 2000 Habitats in the Brière Marshes: Setting Up a Long-Term Monitoring Strategy to Understand Changes
On a global scale, wetlands are suffering from a steady decline in surface area and environmental quality. Protecting them is essential and requires a careful spatialisation of their natural habitats. Traditionally, in our study area, species discrimination for floristic mapping has been achieved through on-site field inventories, but this approach is very time-consuming in these difficult-to-access environments. Usually, the resulting maps are also not spatially exhaustive and are not frequently updated. In this paper, we propose to establish a complete map of the study area using remote sensors and set up a long-term and regular observatory of environmental changes to monitor the evolution of a major French wetland. This methodology combines three dataset acquisition technologies, airborne hyperspectral and WorldView-3 multispectral images, supplemented by LiDAR images, which we compared to evaluate the difference in performances. To do so, we applied the Random Forest supervised classification methods using ground reference areas and compared the out-of-bag score (OOB score) as well as the matrix of confusion resulting from each dataset. Thirteen habitats were discriminated at level 4 of the European Nature Information System (EUNIS) typology, at a spatial resolution of around 1.2 m. We first show that a multispectral image with 19 variables produces results which are almost as good as those produced by a hyperspectral image with 58 variables. The experiment with different features also demonstrates that the use of four bands derived from LiDAR datasets can improve the quality of the classification. Invasive alien species Ludwigia grandiflora and Crassula helmsii were also detected without error which is very interesting when applied to these endangered environments. Therefore, since WV-3 images provide very good results and are easier to acquire than airborne hyperspectral data, we propose to use them going forward for the regular observation of the Brière marshes habitat we initiated.
Implications of Spatial Habitat Diversity on Diet Selection of European Bison and Przewalski’s Horses in a Rewilding Area
In Europe, the interest in introducing megaherbivores to achieve ambitious habitat restoration goals is increasing. In this study, we present the results of a one-year monitoring program in a rewilding project in Germany (Doeberitzer Heide), where European bison (Bison bonasus) and Przewalski’s horses (Equus ferus przewalskii) were introduced for ecological restoration purposes. Our objectives were to investigate diet and habitat preferences of Przewalski’s horses and European bison under free-choice conditions without fodder supplementation. In a random forest classification approach, we used multitemporal RapidEye time series imagery to map the diversity of available habitats within the study area. This spatially explicit habitat distribution from satellite imagery was combined with direct field observations of seasonal diet preferences of both species. In line with the availability of preferred forage plants, European bison and Przewalski’s horses both showed seasonal habitat preferences. Because of their different preferences for forage plants, they did not overlap in habitat use except for a short time in the colder season. European bison used open habitats and especially wet open habitats more than expected based on available habitats in the study area. Comparative foraging and feeding niches should be considered in the establishment of multispecies projects to maximize the outcome of restoration processes.
European map of alien plant invasions based on the quantitative assessment across habitats
Recent studies using vegetation plots have demonstrated that habitat type is a good predictor of the level of plant invasion, expressed as the proportion of alien to all species. At local scale, habitat types explain the level of invasion much better than alien propagule pressure. Moreover, it has been shown that patterns of habitat invasion are consistent among European regions with contrasting climates, biogeography, history and socioeconomic background. Here we use these findings as a basis for mapping the level of plant invasion in Europe. European Union and some adjacent countries. We used 52,480 vegetation plots from Catalonia (NE Spain), Czech Republic and Great Britain to quantify the levels of invasion by neophytes (alien plant species introduced after ad 1500) in 33 habitat types. Then we estimated the proportion of each of these habitat types in CORINE land-cover classes and calculated the level of invasion for each class. We projected the levels of invasion on the CORINE land-cover map of Europe, extrapolating Catalonian data to the Mediterranean bioregion, Czech data to the Continental bioregion, British data to the British Isles and combined Czech-British data to the Atlantic and Boreal bioregions. The highest levels of invasion were predicted for agricultural, urban and industrial land-cover classes, low levels for natural and semi-natural grasslands and most woodlands, and the lowest levels for sclerophyllous vegetation, heathlands and peatlands. The resulting map of the level of invasion reflected the distribution of these land-cover classes across Europe. High level of invasion is predicted in lowland areas of the temperate zone of western and central Europe and low level in the boreal zone and mountain regions across the continent. Low level of invasion is also predicted in the Mediterranean region except its coastline, river corridors and areas with irrigated agricultural land.