Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,487 result(s) for "heifers"
Sort by:
Determining the pre-grazing sward height of Kikuyu grass
Understanding the grazing process and animal response to sward structures (e.g., sward height) is key to setting targets for efficient grazing management. We hypothesized that the short-term intake rate (STIR) of dry matter (DM) and digestible organic matter (OM) by dairy heifers is maximized with Kikuyu grass (Cenchrus clandestinus-Hochst. ex Chiov.) of intermediate sward heights. The treatments consisted of five pre-grazing sward heights (10, 15, 20, 25, and 30 cm) randomly assigned to two of ten paddocks. The experimental design included two measurements of each paddock at different periods and times of day. Three Holstein heifers (440 ± 42 kg body weight) were used to determine the STIR, which was estimated using the double-weighing technique with correction for insensible weight losses. The bite mass (BM), bite rate (BR), sward structural characteristics, and nutritional value of herbage samples were assessed. The data were analyzed using mixed models with a factorial arrangement of five sward heights, two times of day, and two evaluation periods. The sward height of Kikuyu grass that maximized both STIRs was approximately 20 cm. The STIR of the DM was 30% and 15% lower than the maximum in the shortest and tallest swards tested, respectively. In swards shorter than 20 cm, the STIR was lower because the BM decreased with sward height, whereas in those greater than 20 cm, the lower BM and STIR of DM was explained by a decrease in bulk density and bite volume. The top stratum was composed mainly of highly digestible leaf blades with similar nutrient content across sward heights; therefore the STIR of digestible OM was also maximized at 20 cm. Hence, the optimal pre-grazing sward height of Kikuyu grass should be managed at 20 cm under rotational stocking systems to maximize nutrient intake rate of dairy heifers.
Effects of dietary energy levels on rumen bacterial community composition in Holstein heifers under the same forage to concentrate ratio condition
Background The rumen bacterial community plays a critical role in feeds degradation and productivity. The effects of different forage to concentrate ratios on the ruminal microbial population structure have been studied extensively; however, research into changes in the ruminal bacterial community composition in heifers fed different energy level diets, with the same forage to concentrate ratio, has been very limited. The purpose of this study was to investigate the effects of different dietary energy levels, with the same forage to concentrate ratio, on ruminal bacterial community composition of heifers. Furthermore, we also determine the relationship between rumen bacteria and ruminal fermentation parameters. Results The 16S rRNA gene sequencing showed that, under the same forage to concentrate ratio of 50:50, an 8% difference in dietary energy level had no significant impact on the alpha diversity and the relative abundance of the major phyla and most of the major genera in heifers. In all the treatments groups, Firmicutes , Bacteroidetes , and Proteobacteria were the dominant phyla. Spearman correlation analysis between the relative abundances of the rumen bacteria at the genus level and the fermentation parameters showed that the relative abundances of Prevotella and BF311 were positively correlated with the ammonia nitrogen and butyrate concentrations, and these two genera were negatively correlated with the propionate and isovalerate concentrations, respectively, and the genus Bifidobacterium was positively correlated with the butyrate concentration and was negatively correlated with propionate and isovalerate concentration. The total volatile fatty acid concentration was positively correlated with BF311 abundances, and was negatively correlated with Trichococcus and Facklamia abundances. Conclusions Under the same forage to concentrate ratio condition of 50:50, an 8% difference in dietary energy levels had little impact on rumen bacterial community composition in heifers. The correlations between some genera of ruminal bacteria and the concentrations of volatile fatty acids and ammonia nitrogen might be indicative that the ruminal fermentation parameters are strongly influenced by the rumen bacterial community composition.
Maternal nutrition and stage of early pregnancy in beef heifers: impacts on hexose and AA concentrations in maternal and fetal fluids
We examined the hypothesis that maternal nutrition and day of gestation would affect the concentrations of AAs and hexoses in bovine utero-placental fluids and maternal serum from days 16 to 50 of gestation. Forty-nine cross-bred Angus heifers were bred via artificial insemination and fed a control diet (CON = 100% of requirements for growth) or a restricted diet (RES = 60% of CON) and ovariohysterectomized on days 16, 34, or 50 of gestation; nonpregnant controls were not bred and ovariohysterectomized on day 16 of the synchronized estrous cycle. The resulting design was a completely randomized design with a 2 × 3 factorial + 1 arrangement of treatments. Maternal serum, histotroph, allantoic fluid, and amniotic fluid were collected at time of ovariohysterectomy. Samples were then analyzed for concentrations of AAs and intermediary metabolites: alanine (Ala), arginine, asparagine (Asn), aspartate (Asp), citrulline, cysteine, glutamine, glutamate (Glu), glycine (Gly), histidine, isoleucine, leucine (Leu), lysine, methionine (Met), ornithine, phenylalanine (Phe), proline (Pro), serine (Ser), threonine (Thr), tryptophan, tyrosine (Tyr), and valine (Val). The concentrations of Gly, Ser, and Thr in maternal serum were greater (P ≤ 0.05) in CON compared with RES. Furthermore, day of gestation affected (P ≤ 0.05) concentrations of Asn, Glu, Phe, Thr, and Tyr in maternal serum. Status of maternal nutrition affected the Asp concentration of histotroph where RES was greater (P = 0.02) than CON. In histotroph, Ala, Leu, Met, and Val concentrations were greater (P ≤ 0.05) on day 50 compared with day 16. Additionally, Glu and Pro concentrations in histotroph were greater (P < 0.01) on days 34 and 50 compared with day 16. A day × treatment interaction was observed for the concentration of Val in allantoic fluid where day 34 CON was greater (P = 0.05) than all other days and nutritional treatments. In addition, the concentration of Gln in amniotic fluid experienced a day × treatment interaction where day 34 RES was greater (P ≤ 0.05) than day 34 CON, which was greater (P ≤ 0.05) than day 50 CON and RES. These data support our hypothesis that day of gestation and maternal nutrition affect the concentrations of various neutral and acidic AA in beef heifer utero-placental fluids and maternal serum from days 16 to 50 of gestation.
An empirical analysis of the cost of rearing dairy heifers from birth to first calving and the time taken to repay these costs
Rearing quality dairy heifers is essential to maintain herds by replacing culled cows. Information on the key factors influencing the cost of rearing under different management systems is, however, limited and many farmers are unaware of their true costs. This study determined the cost of rearing heifers from birth to first calving in Great Britain including the cost of mortality, investigated the main factors influencing these costs across differing farming systems and estimated how long it took heifers to repay the cost of rearing on individual farms. Primary data on heifer management from birth to calving was collected through a survey of 101 dairy farms during 2013. Univariate followed by multivariable linear regression was used to analyse the influence of farm factors and key rearing events on costs. An Excel spreadsheet model was developed to determine the time it took for heifers to repay the rearing cost. The mean±SD ages at weaning, conception and calving were 62±13, 509±60 and 784±60 days. The mean total cost of rearing was £1819±387/heifer with a mean daily cost of £2.31±0.41. This included the opportunity cost of the heifer and the mean cost of mortality, which ranged from £103.49 to £146.19/surviving heifer. The multivariable model predicted an increase in mean cost of rearing of £2.87 for each extra day of age at first calving and a decrease in mean cost of £6.06 for each percentile increase in time spent at grass. The model also predicted a decrease in the mean cost of rearing in autumn and spring calving herds of £273.20 and £288.56, respectively, compared with that in all-year-round calving herds. Farms with herd sizes⩾100 had lower mean costs of between £301.75 and £407.83 compared with farms with <100 milking cows. The mean gross margin per heifer was £441.66±304.56 (range £367.63 to £1120.08), with 11 farms experiencing negative gross margins. Most farms repaid the cost of heifer rearing in the first two lactations (range 1 to 6 lactations) with a mean time from first calving until breaking even of 530±293 days. The results of the economic analysis suggest that management decisions on key reproduction events and grazing policy significantly influence the cost of rearing and the time it takes for heifers to start making a profit for the farm.
Genotype-by-environment interaction in Holstein heifer fertility traits using single-step genomic reaction norm models
Background The effect of heat stress on livestock production is a worldwide issue. Animal performance is influenced by exposure to harsh environmental conditions potentially causing genotype-by-environment interactions (G × E), especially in highproducing animals. In this context, the main objectives of this study were to (1) detect the time periods in which heifer fertility traits are more sensitive to the exposure to high environmental temperature and/or humidity, (2) investigate G × E due to heat stress in heifer fertility traits, and, (3) identify genomic regions associated with heifer fertility and heat tolerance in Holstein cattle. Results Phenotypic records for three heifer fertility traits (i.e., age at first calving, interval from first to last service, and conception rate at the first service) were collected, from 2005 to 2018, for 56,998 Holstein heifers raised in 15 herds in the Beijing area (China). By integrating environmental data, including hourly air temperature and relative humidity, the critical periods in which the heifers are more sensitive to heat stress were located in more than 30 days before the first service for age at first calving and interval from first to last service, or 10 days before and less than 60 days after the first service for conception rate. Using reaction norm models, significant G × E was detected for all three traits regarding both environmental gradients, proportion of days exceeding heat threshold, and minimum temperature-humidity index. Through single-step genome-wide association studies, PLAG1 , AMHR2 , SP1 , KRT8 , KRT18 , MLH1 , and EOMES were suggested as candidate genes for heifer fertility. The genes HCRTR1 , AGRP , PC , and GUCY1B1 are strong candidates for association with heat tolerance. Conclusions The critical periods in which the reproductive performance of heifers is more sensitive to heat stress are trait-dependent. Thus, detailed analysis should be conducted to determine this particular period for other fertility traits. The considerable magnitude of G × E and sire re-ranking indicates the necessity to consider G × E in dairy cattle breeding schemes. This will enable selection of more heat-tolerant animals with high reproductive efficiency under harsh climatic conditions. Lastly, the candidate genes identified to be linked with response to heat stress provide a better understanding of the underlying biological mechanisms of heat tolerance in dairy cattle.
Reactivation and Foetal Infection in Pregnant Heifers Infected with INeospora caninum/I Live Tachyzoites at Prepubertal Age
Neospora caninum is recognised for causing cattle abortion, provoking severe economic losses in the livestock industry worldwide. The aim of the present study was to evaluate the reactivation and foetal infection in pregnant heifers inoculated with live N. caninum tachyzoites before puberty. A total of 15 30-month-old pregnant heifers were allocated into four groups: animals inoculated with live tachyzoites of NC-Argentina LP1 isolate before puberty and challenged with live tachyzoites of NC-1 strain at 210 days of gestation (DG) (Group A); animals mock inoculated before puberty and challenged with NC-1 strain at 210 DG (Group B), animals inoculated before puberty but not subsequently challenged (Group C); and noninfected and nonchallenged animals (Group D). The results of this study showed that 100% of animals infected before puberty (Groups A and C) suffered reactivation of the infection at the seventh month of gestation. In addition, in three and two calves from Groups A and C, respectively, congenital infection was confirmed. Interestingly, we provide evidence that the use of live N. caninum tachyzoites in young animals as a strategy to induce protection is neither safe nor effective.
Heifer calving date positively influences calf weaning weights through six parturitions
Longevity and lifetime productivity are important factors influencing profitability for the cow-calf producer. Heifers that conceive earlier in the breeding season will calve earlier in the calving season and have a longer interval to rebreeding. Calves born earlier in the calving season will also be older and heavier at weaning. Longevity data were collected on 2,195 heifers from producers in South Dakota Integrated Resource Management groups. Longevity and weaning weight data were collected on 16,549 individual heifers at the U.S. Meat Animal Research Center (USMARC). Data were limited to heifers that conceived during their first breeding season. Heifers were grouped into 21-d calving periods. Heifers were determined to have left the herd when they were diagnosed not pregnant at the end of the breeding season. Heifers that left the herd for reasons other than reproductive failure were censored from the data. Heifers that calved with their first calf during the first 21-d period of the calving season had increased (P < 0.01) longevity compared with heifers that calved in the second 21-d period, or later. Average longevity for South Dakota heifers that calved in the first or later period was 5.1 ± 0.1 and 3.9 ± 0.1 yr, respectively. Average longevity for USMARC heifers that calved in the first, second, or third period was 8.2 ± 0.3, 7.6 ± 0.5, and 7.2 ± 0.1 yr, respectively. Calving period as a heifer influenced (P < 0.01) unadjusted weaning BW of the first 6 calves. Estimated postpartum interval to conception as a 2-yr-old cow was greater for females that calved in the first period as heifers but did not differ between heifer calving periods in subsequent calving seasons. In summary, heifers that calved early in the calving season with their first calf had increased longevity and kilograms weaned, compared with heifers that calved later in the calving season.
The Preservation of the Effects of Preweaning Nutrition on Growth, Immune Competence and Metabolic Characteristics of the Developing Heifer
This experiment investigated the preservation effects of two preweaning milk feeding nutritional treatments (High: 8 L and Low: 4 L milk per day) on 20, 12-month-old Holstein-Friesian dairy heifers (Bos taurus). A vaccination immune challenge was initially implemented on these 20 heifers at 6 weeks of age and the findings indicated superior growth, immune competence and favorable metabolic characteristics from the calves that had been fed 8 L milk per day. Postweaning, all heifers were treated the same under non-experimental conditions, and the immune challenge was repeated at 12 months of age for the current experiment. Consistent with the first immune challenge, heifers from the High preweaning treatment group still had higher white cell count and neutrophil count, indicating superior immune competence. The differences found in metabolic biomarkers, including beta-hydroxybutyrate, glucose and insulin, in the preweaning phase had disappeared, suggesting these biomarkers were influenced directly by the nutritional input at the time. There were no differences in NEFA levels between treatments at either stage of development. Postweaning, the heifers from the Low preweaning treatment group experienced accelerated growth with slightly numerically higher ADG (0.83 kg/day vs. 0.89 kg/day), resulting in the initial differences in bodyweight recorded at weaning being eliminated by 13 months of age. These results are evidence of a form of immunological developmental programming as a result of accelerated preweaning nutrition and therefore, are not supportive of restricted milk feeding of calves.
A tool to optimise dairy herd replacements combining conventional, sexed, and beef semen
A tool to help Italian dairy farmers choosing the most suitable replacement strategy has been developed. The approach aimed to identify yearly female replacement needs based on herd performance level and combination of different semen type (conventional, sex-sorted, and beef semen), with the ultimate goal of enhancing farm profit. A case study based on a 350-cow Holstein herd was used and three levels of herd fertility (high, medium, and low) were simulated to define the yearly number of dairy female replacements needed and the number of females yielded under different semen utilisation scenario. The number of annual dairy replacements was obtained as the number of cows multiplied by the replacement rate and adjusted by the age at first calving. Number of animals yielded was used to evaluate the replacement cost per 100 L of milk. Then, four strategies of sexed semen utilisation were combined with five strategies of beef semen use. Animals that were not inseminated with sexed or beef semen were bred with conventional semen. Regardless of fertility level, the number of dairy female replacement heifers that the farm needs are 110. Increasing beef semen use allows farmer to yield less replacement heifers. Furthermore, as beef semen use increases and the number of replacement heifers decreases, replacement cost per 100 L of milk reduces. Therefore, our results highlighted that replacement costs increase with increasing number of yielded heifers. Hence, combining beef and sexed semen to reach heifer balance close to zero, decreased the replacement cost.
Deregulation of oxidative phosphorylation pathways in embryos derived in vitro from prepubertal and pubertal heifers based on whole-transcriptome sequencing
Background Although, oocytes from prepubertal donors are known to be less developmentally competent than those from adult donors it does not restrain their ability to produce full-term pregnancies. The transcriptomic profile of embryos could be used as a predictor for embryo’s individual developmental competence. The aim of the study was to compare transcriptomic profile of blastocysts derived from prepubertal and pubertal heifers oocytes. Bovine cumulus-oocyte complexes (COCs) were obtained by ovum pick- up method from prepubertal and pubertal heifers. After in vitro maturation COCs were fertilized and cultured to the blastocyst stage. Total RNA was isolated from both groups of blastocysts and RNA-seq was performed. Gene ontology analysis was performed by DAVID (Database for Annotation, Visualization and Integrated Discovery). Results A higher average blastocyst rate was obtained in the pubertal than in the pre-pubertal group. There were no differences in the quality of blastocysts between the examined groups. We identified 436 differentially expressed genes (DEGs) between blastocysts derived from researched groups, of which 247 DEGs were downregulated in blastocysts derived from pubertal compared to prepubertal heifers oocytes, and 189 DEGs were upregulated. The genes involved in mitochondrial function, including oxidative phosphorylation (OXPHOS) were found to be different in studied groups using Kyoto Encyclopedia of Genes (KEGG) pathway analysis and 8 of those DEGs were upregulated and 1 was downregulated in blastocysts derived from pubertal compared to prepubertal heifers oocytes. DEGs associated with mitochondrial function were found: ATP synthases (ATP5MF-ATP synthase membrane subunit f, ATP5PD- ATP synthase peripheral stalk subunit d, ATP12A- ATPase H+/K + transporting non-gastric alpha2 subunit), NADH dehydrogenases (NDUFS3- NADH: ubiquinone oxidoreductase subunit core subunit S3, NDUFA13- NADH: ubiquinone oxidoreductase subunit A13, NDUFA3- NADH: ubiquinone oxidoreductase subunit A3), cytochrome c oxidase (COX17), cytochrome c somatic (CYCS) and ubiquinol cytochrome c reductase core protein 1 (UQCRC1). We found lower number of apoptotic cells in blastocysts derived from oocytes collected from prepubertal than those obtained from pubertal donors. Conclusions Despite decreased expression of genes associated with OXPHOS pathway in blastocysts from prepubertal heifers oocytes, the increased level of ATP12A together with the lower number of apoptotic cells in these blastocysts might support their survival after transfer.