Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1 result(s) for "heterogeneous degradation paths"
Sort by:
Handling Multi-Source Uncertainty in Accelerated Degradation Through a Wiener-Based Robust Modeling Scheme
Uncertainty from heterogeneous degradation paths, limited experimental samples, and exogenous perturbations often complicates accelerated lifetime modeling and prediction. To confront these intertwined challenges, a Wiener process-based robust framework is developed. The proposed approach incorporates random-effect structures to capture unit-to-unit variability, adopts interval-based inference to reflect sampling limitations, and employs a hybrid estimator, combining Huber-type loss with a Metropolis–Hastings algorithm, to suppress the influence of external disturbances. In addition, a quantitative stress–parameter linkage is established under the accelerated factor principle, supporting consistent transfer from accelerated testing to normal conditions. Validation on contact stress relaxation data of connectors confirms that this methodology achieves more stable parameter inference and improves the reliability of lifetime predictions.