Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
274
result(s) for
"heterogeneous nucleation"
Sort by:
Compositional and Mineralogical Effects on Ice Nucleation Activity of Volcanic Ash
2018
Volcanic ash produced during explosive eruptions may serve as ice nuclei in the atmosphere, contributing to the occurrence of volcanic lightning due to tribocharging from ice–ice or ice–ash collisions. Here, different ash samples were tested using deposition-mode and immersion-mode ice nucleation experiments. Results show that bulk composition and mineral abundance have no measurable effect on depositional freezing at the temperatures tested, as all samples have similar ice saturation ratios. In the immersion mode, there is a strong positive correlation between K2O content and ice nucleation site density at −25 °C and a strong negative correlation between MnO and TiO2 content at temperatures from −35 to −30 °C. The most efficient sample in the immersion mode has the highest surface area, smallest average grain size, highest K2O content, and lowest MnO content. These results indicate that although ash abundance—which creates more available surface area for nucleation—has a significant effect on immersion-mode freezing, composition may also contribute. Consequently, highly explosive eruptions of compositionally evolved magmas create the necessary parameters to promote ice nucleation on grain surfaces, which permits tribocharging due to ice–ice or ice–ash collisions, and contribute to the frequent occurrence of volcanic lightning within the eruptive column and plume during these events.
Journal Article
A Review of Solid Electrolyte Interphase (SEI) and Dendrite Formation in Lithium Batteries
2023
Lithium-metal batteries with high energy/power densities have significant applications in electronics, electric vehicles, and stationary power plants. However, the unstable lithium-metal-anode/electrolyte interface has induced insufficient cycle life and safety issues. To improve the cycle life and safety, understanding the formation of the solid electrolyte interphase (SEI) and growth of lithium dendrites near the anode/electrolyte interface, regulating the electrodeposition/electrostripping processes of Li
+
, and developing multiple approaches for protecting the lithium-metal surface and SEI layer are crucial and necessary. This paper comprehensively reviews the research progress in SEI and lithium dendrite growth in terms of their classical electrochemical lithium plating/stripping processes, interface interaction/nucleation processes, anode geometric evolution, fundamental electrolyte reduction mechanisms, and effects on battery performance. Some important aspects, such as charge transfer, the local current distribution, solvation, desolvation, ion diffusion through the interface, inhibition of dendrites by the SEI, additives, models for dendrite formation, heterogeneous nucleation, asymmetric processes during stripping/plating, the host matrix, and in situ nucleation characterization, are also analyzed based on experimental observations and theoretical calculations. Several technical challenges in improving SEI properties and reducing lithium dendrite growth are analyzed. Furthermore, possible future research directions for overcoming the challenges are also proposed to facilitate further research and development toward practical applications.
Graphical Abstract
Journal Article
Direct measuring of single–heterogeneous bubble nucleation mediated by surface topology
2022
Heterogeneous bubble nucleation is one of the most fundamental interfacial processes ranging from nature to technology. There is excellent evidence that surface topology is important in directing heterogeneous nucleation; however, deep understanding of the energetics by which nanoscale architectures promote nucleation is still challenging. Herein, we report a direct and quantitative measurement of single-bubble nucleation on a single silica nanoparticle within a microsized droplet using scanning electrochemical cell microscopy. Local gas concentration at nucleation is determined from finite element simulation at the corresponding faradaic current of the peak-featured voltammogram. It is demonstrated that the criteria gas concentration for nucleation first drops and then rises with increasing nanoparticle radius. An optimum nanoparticle radius around 10 nm prominently expedites the nucleation by facilitating the special topological nanoconfinements that consequently catalyze the nucleation. Moreover, the experimental result is corroborated by our theoretical calculations of free energy change based on the classic nucleation theory. This study offers insights into the impact of surface topology on heterogenous nucleation that have not been previously observed.
Journal Article
Brief Overview of Ice Nucleation
2021
The nucleation of ice is vital in cloud physics and impacts on a broad range of matters from the cryopreservation of food, tissues, organs, and stem cells to the prevention of icing on aircraft wings, bridge cables, wind turbines, and other structures. Ice nucleation thus has broad implications in medicine, food engineering, mineralogy, biology, and other fields. Nowadays, the growing threat of global warming has led to intense research activities on the feasibility of artificially modifying clouds to shift the Earth’s radiation balance. For these reasons, nucleation of ice has been extensively studied over many decades and rightfully so. It is thus not quite possible to cover the whole subject of ice nucleation in a single review. Rather, this feature article provides a brief overview of ice nucleation that focuses on several major outstanding fundamental issues. The author’s wish is to aid early researchers in ice nucleation and those who wish to get into the field of ice nucleation from other disciplines by concisely summarizing the outstanding issues in this important field. Two unresolved challenges stood out from the review, namely the lack of a molecular-level picture of ice nucleation at an interface and the limitations of classical nucleation theory.
Journal Article
Formation of surface nanodroplets under controlled flow conditions
2015
Nanodroplets on a solid surface (i.e., surface nanodroplets) have practical implications for high-throughput chemical and biological analysis, lubrications, laboratory-on-chip devices, and near-field imaging techniques. Oil nanodroplets can be produced on a solid–liquid interface in a simple step of solvent exchange in which a good solvent of oil is displaced by a poor solvent. In this work, we experimentally and theoretically investigate the formation of nanodroplets by the solvent exchange process under well-controlled flow conditions. We find significant effects from the flow rate and the flow geometry on the droplet size. We develop a theoretical framework to account for these effects. The main idea is that the droplet nuclei are exposed to an oil oversaturation pulse during the exchange process. The analysis shows that the volume of the nanodroplets increases with the Peclet numberPeof the flow as ∝Pe
3/4, which is in good agreement with our experimental results. In addition, at fixed flow rate and thus fixed Peclet number, larger and less homogeneously distributed droplets formed at less-narrow channels, due to convection effects originating from the density difference between the two solutions of the solvent exchange. The understanding from this work provides valuable guidelines for producing surface nanodroplets with desired sizes by controlling the flow conditions.
Journal Article
Immersion mode heterogeneous ice nucleation by an illite rich powder representative of atmospheric mineral dust
2012
Atmospheric dust rich in illite is transported globally from arid regions and impacts cloud properties through the nucleation of ice. We present measurements of ice nucleation in water droplets containing known quantities of an illite rich powder under atmospherically relevant conditions. The illite rich powder used here, NX illite, has a similar mineralogical composition to atmospheric mineral dust sampled in remote locations, i.e. dust which has been subject to long range transport, cloud processing and sedimentation. Arizona Test Dust, which is used in other ice nucleation studies as a model atmospheric dust, has a significantly different mineralogical composition and we suggest that NX illite is a better surrogate of natural atmospheric dust. Using optical microscopy, heterogeneous nucleation in the immersion mode by NX illite was observed to occur dominantly between 246 K and the homogeneous freezing limit. In general, higher freezing temperatures were observed when larger surface areas of NX illite were present within the drops. Homogenous nucleation was observed to occur in droplets containing low surface areas of NX illite. We show that NX illite exhibits strong particle to particle variability in terms of ice nucleating ability, with ~1 in 105 particles dominating ice nucleation when high surface areas were present. In fact, this work suggests that the bulk of atmospheric mineral dust particles may be less efficient at nucleating ice than assumed in current model parameterisations. For droplets containing ≤2 × 10−6 cm2 of NX illite, freezing temperatures did not noticeably change when the cooling rate was varied by an order of magnitude. The data obtained during cooling experiments (surface area ≤2 × 10−6 cm2) is shown to be inconsistent with the single component stochastic model, but is well described by the singular model (ns(236.2 K ≤ T ≤ 247.5 K) = exp(6.53043 × 104− 8.2153088 × 102T + 3.446885376T2 − 4.822268 × 10−3T3). However, droplets continued to freeze when the temperature was held constant, which is inconsistent with the time independent singular model. We show that this apparent discrepancy can be resolved using a multiple component stochastic model in which it is assumed that there are many types of nucleation sites, each with a unique temperature dependent nucleation coefficient. Cooling rate independence can be achieved with this time dependent model if the nucleation rate coefficients increase very rapidly with decreasing temperature, thus reconciling our measurement of nucleation at constant temperature with the cooling rate independence.
Journal Article
Composition templating for heterogeneous nucleation of intermetallic compounds
2024
Refinement of intermetallic compounds (IMCs) through enhancing heterogeneous nucleation during casting process is an important approach to improve the properties of aluminium alloys, which greatly increases the economy value of recycled Al-alloys. However, heterogeneous nucleation of IMCs is inherently more difficult than that of a pure metal or a solid solution. It requires not only creation of a crystal structure but also the positioning of 2 or more different types of atoms in the lattice with specific composition close to that of the nucleated IMCs. Previous understanding on heterogeneous nucleation is based on structural templating, usually considering the small lattice misfit at the interface between the nucleating solid and substrate. In this work, we proposed a hypothesis and demonstrated that composition templating plays a critical role in heterogeneous nucleation of IMCs. The experimental results revealed that segregation of Fe atoms on the AlB
2
surface, i.e., the Fe modified AlB
2
particle, provides the required composition templating and hence enhances heterogeneous nucleation of α-Al
15
(Fe, Mn)
3
Si
2
, resulting in a significant refinement of the α-Al
15
(Fe, Mn)
3
Si
2
particles in an Al-5 Mg-2Si-1.0Mn-1.2Fe alloy.
Journal Article
The diversity of molecular mechanisms of carbonate biomineralization by bacteria
by
Cassier-Chauvat, Corinne
,
Benzerara, Karim
,
Chauvat, Franck
in
Bacteria
,
Biomaterials
,
Characterization and Evaluation of Materials
2021
Although biomineralization of CaCO
3
is widespread in Bacteria and Archaea, the molecular mechanisms involved in this process remain less known than those used by Eukaryotes. A better understanding of these mechanisms is crucial for a broad diversity of studies including those (i) aiming at assessing the role of bacteria in the geochemical cycles of Ca and C, (ii) investigating the process of fossilization, and (iii) engineering applications using bacterially mediated CaCO
3
mineralization. Different types of bacterially-mediated mineralization modes have been distinguished depending on whether they are influenced (by extracellular organic molecules), induced (by metabolic activity) or controlled (by specific genes). In the first two types, mineralization is usually extracellular, while it is intracellular for the two ascertained cases of controlled bacterial mineralization. In this review, we list a large number of cases illustrating the three different modes of bacterially-mediated CaCO
3
mineralization. Overall, this shows the broad diversity of metabolic pathways, organic molecules and thereby microorganisms that can biomineralize CaCO
3
. Providing an improved understanding of the mechanisms involved and a good knowledge of the molecular drivers of carbonatogenesis, the increasing number of (meta)-omics studies may help in the future to estimate the significance of bacterially mediated CaCO
3
mineralization.
Journal Article
Identifying crystal nucleation mechanisms in a synthetic trachybasalt: a multimodal approach
by
Peres, Stefano
,
Abart, Rainer
,
Lelarge, Stefano Iannini
in
Clustering
,
Cooling
,
Crystallization
2024
To develop new criteria to distinguish different crystal nucleation mechanisms in silicate melts, we performed crystallization experiments using a synthetic hydrous (2 wt% H
2
O) trachybasalt and combined three-dimensional information from synchrotron X-ray computed microtomography with two-dimensional mapping of crystallographic orientation relationships (CORs) using electron backscatter diffraction. Crystallization experiments were performed at 400 MPa by cooling the melt from 1300 °C to resting temperatures of 1150 and 1100 °C and maintaining isothermal conditions for 30 min and 8 h. Three distinct titanomagnetite (Tmt) populations formed: (1) skeletal crystals, isolated or partially embedded in clinopyroxene (Cpx); (2) anhedral crystals, always attached to Cpx; (3) flattened needle-shaped crystals, embedded in Cpx. These morphologically different Tmt populations formed in response to one cooling event, with varying nucleation mechanisms and at different undercooling conditions. The clustered three-dimensional distribution of population 2 and 3 Tmt grains and the high proportion of Tmt-Cpx interfaces sharing CORs indicate that these Tmt grains heterogeneously nucleated on Cpx. The near-random three-dimensional distribution of (often isolated) population 1 Tmt grains, together with the low proportion of Tmt-Cpx interfaces sharing CORs, imply their isolated, possibly homogeneous nucleation, potentially followed by heterogeneous nucleation of Cpx on population 1 Tmt. Heterogeneous nucleation in slightly to moderately undercooled magmas should affect the sequence of crystallization as well as morphology and clustering of crystals, which may actively contribute to the variation of rheological parameters like viscosity. Finally, observed intra- and inter-sample variations in Tmt-Cpx COR frequencies indicate the potential for this parameter to record further petrological information.
Journal Article
Impact of Surface Roughness on Crystal Nucleation
2021
We examine the effect of rough surfaces on crystal nucleation by means of kinetic Monte Carlo simulations. Our work makes use of three-dimensional kMC models, explicit representation of transport in solution and rough surfaces modeled as randomly varying height fluctuations (roughness) with exponentially decaying correlation length (topology). We use Forward-Flux Sampling to determine the nucleation rate for crystallization for surfaces of different roughness and topology and show that the effect on crystallization is a complex interplay between the two. For surfaces with low roughness, small clusters form on the surface but as clusters become larger they are increasingly likely to be found in the bulk solution while rougher surfaces eventually favor heterogeneous nucleation on the surface. In both cases, the rough surface raises the local supersaturation in the solution thus leading to another mechanism of enhanced nucleation rate.
Journal Article