Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1 result(s) for "high‐performance multiple‐Vth circuits"
Sort by:
A universal method for designing low-power carbon nanotube FET-based multiple-valued logic circuits
This study presents new low-power multiple-valued logic (MVL) circuits for nanoelectronics. These carbon nanotube field effect transistor (FET) (CNTFET)-based MVL circuits are designed based on the unique characteristics of the CNTFET device such as the capability of setting the desired threshold voltages by adopting correct diameters for the nanotubes as well as the same carrier mobility for the P- and N-type devices. These characteristics make CNTFETs very suitable for designing high-performance multiple-Vth circuits. The proposed MVL circuits are designed based on the conventional CMOS architecture and by utilising inherently binary gates. Moreover, each of the proposed CNTFET-based ternary circuits includes all the possible types of ternary logic, that is, negative, positive and standard, in one structure. The method proposed in this study is a universal technique for designing MVL logic circuits with any arbitrary number of logic levels, without static power dissipation. The results of the simulations, conducted using Synopsys HSPICE with 32 nm-CNTFET technology, demonstrate improvements in terms of power consumption, energy efficiency, robustness and specifically static power dissipation with respect to the other state-of-the-art ternary and quaternary circuits.