Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
14,485 result(s) for "high protein diet"
Sort by:
The Effects of Different Dietary Patterns on Bone Health
Bone metabolism is a process in which osteoclasts continuously clear old bone and osteoblasts form osteoid and mineralization within basic multicellular units, which are in a dynamic balance. The process of bone metabolism is affected by many factors, including diet. Reasonable dietary patterns play a vital role in the prevention and treatment of bone-related diseases. In recent years, dietary patterns have changed dramatically. With the continuous improvement in the quality of life, high amounts of sugar, fat and protein have become a part of people’s daily diets. However, people have gradually realized the importance of a healthy diet, intermittent fasting, calorie restriction, a vegetarian diet, and moderate exercise. Although these dietary patterns have traditionally been considered healthy, their true impact on bone health are still unclear. Studies have found that caloric restriction and a vegetarian diet can reduce bone mass, the negative impact of a high-sugar and high-fat dietary (HSFD) pattern on bone health is far greater than the positive impact of the mechanical load, and the relationship between a high-protein diet (HPD) and bone health remains controversial. Calcium, vitamin D, and dairy products play an important role in preventing bone loss. In this article, we further explore the relationship between different dietary patterns and bone health, and provide a reference for how to choose the appropriate dietary pattern in the future and for how to prevent bone loss caused by long-term poor dietary patterns in children, adolescents, and the elderly. In addition, this review provides dietary references for the clinical treatment of bone-related diseases and suggests that health policy makers should consider dietary measures to prevent and treat bone loss.
Effects of a High-Protein Diet on Kidney Injury under Conditions of Non-CKD or CKD in Mice
Considering the prevalence of obesity and global aging, the consumption of a high-protein diet (HPD) may be advantageous. However, an HPD aggravates kidney dysfunction in patients with chronic kidney disease (CKD). Moreover, the effects of an HPD on kidney function in healthy individuals are controversial. In this study, we employed a remnant kidney mouse model as a CKD model and aimed to evaluate the effects of an HPD on kidney injury under conditions of non-CKD and CKD. Mice were divided into four groups: a sham surgery (sham) + normal diet (ND) group, a sham + HPD group, a 5/6 nephrectomy (Nx) + ND group and a 5/6 Nx + HPD group. Blood pressure, kidney function and kidney tissue injury were compared after 12 weeks of diet loading among the four groups. The 5/6 Nx groups displayed blood pressure elevation, kidney function decline, glomerular injury and tubular injury compared with the sham groups. Furthermore, an HPD exacerbated glomerular injury only in the 5/6 Nx group; however, an HPD did not cause kidney injury in the sham group. Clinical application of these results suggests that patients with CKD should follow a protein-restricted diet to prevent the exacerbation of kidney injury, while healthy individuals can maintain an HPD without worrying about the adverse effects.
High-protein diet based on whey protein isolate preserves muscle mass and its association with resistance training attenuates glomerular hypertrophy in rats
To evaluate the effect of administering a high-protein diet (HP) based on whey protein isolate (WPI) associated with ST in rats. Twenty-two Wistar rats were fed a diet containing either 14% WPI (normoproteic) or 35% WPI (high protein) and were subjected to stair training or kept sedentary for 12 weeks. SN = sedentary normoproteic; SH = sedentary high protein; TN = trained normoproteic; TH = trained high protein. HP decreases food intake (P < 0.0001). The SH group showed a significant reduction in plasma triglycerides (P = 0.03). Quadriceps weight was greatest in TH, followed by SH and TN (P < 0.0001). Kidney weight was greater in TH, followed by SH and TN, and was greater than in SN (P < 0.0001). Urea levels were lowest in the SN group (P < 0.001). The urinary space was larger in the TH and SH groups. HP and ST increased the cross-sectional area (CSA) of the gastrocnemius (P < 0.0001) and quadriceps (P < 0.0001) muscles. Hepatic glycogen deposits were highest in the SH group (P < 0.0001). HP with 35% whey promoted satiety and increased hepatic glycogen content without affecting glycemia. Its combination with ST was more efficient in increasing muscle hypertrophy, altering plasma urea levels, and enlarging the urinary space. These findings may be related to the adaptive process of renal physiology stimulated by HP. •The combination of a high-protein diet with consistent resistance training markedly amplifies muscle hypertrophy, resulting in substantial gains in muscle mass and overall physical strength.•The inclusion of whey protein in a high-protein dietary regimen has been demonstrated to significantly reduce plasma triglyceride levels, indicating potential benefits for cardiovascular health.•High-protein diets, whether accompanied by strength training or followed independently, promote specific physiological adaptations in renal function, reflecting the kidneys’ ability to efficiently manage and process the increased protein load.
The effect of 12 weeks of euenergetic high-protein diet in regulating appetite and body composition of women with normal-weight obesity: a randomised controlled trial
Normal-weight obesity (NWO) syndrome is associated with metabolic diseases. The present study aimed to investigate the effects of 12 weeks of a high-protein (HP) v. a standard protein (SP) diet on appetite, anthropometry and body composition in NWO women. In this clinical trial, fifty NWO women were randomly allocated to HP (n 25) or SP (n 25) diet groups. Women in the HP and SP groups consumed 25 and 15 % of their total energy intake from protein for 12 weeks. Weight, fat mass (FM), lean body mass (LBM), waist circumference (WC) and appetite were evaluated at baseline and following their 3-month intervention. After 12 weeks, the LBM was higher in HP compared with no significant changes in the SP group (mean between-group difference = 1·5 kg; 95 % CI 3·1, 0·01; effect size (d) = 0·4). Furthermore, the HP group had lower FM (mean between-group difference –1·1 kg; 95 % CI 1, –3·3; d = –0·2), body fat percentage (BFP) (mean between-group difference –2 %; 95 % CI 0·7, –5·2; d = –0·3) and WC (mean between-group difference –1·4 cm; 95 % CI 0·6, –3·6; d = –0·2) at the end of the study in comparison with the SP group. In both groups, weight and appetite were unchanged over time without significant differences between groups. Twelve weeks of euenergetic diets with different dietary protein contents resulted in no significant weight loss in women with NWO. However, an HP diet significantly improved body composition (LBM, FM, BFP and WC) in this population.
A Simplified and Robust Model for the Study of Diabetic Nephropathy: Streptozotocin-Induced Diabetic Mice Fed a High-Protein Diet
To better understand diabetic nephropathy (DN), developing accurate animal models is crucial. Current models often fail to fully mimic human DN, showing only mild albuminuria, glomerular hypertrophy, and limited mesangial matrix expansion. Our study aims to develop a more robust model by combining streptozotocin (STZ)-induced diabetes with a high-protein diet (HPD). We divided C57Bl/6J mice into three groups: control, STZ with a standard diet (STZ-SD), and STZ with a HPD (45 kcal% protein) (STZ-HPD) for 12 weeks. Renal function was evaluated using the urinary albumin-to-creatinine ratio, and kidney tissues were analyzed for histological and molecular changes. The STZ-HPD group showed significantly higher albuminuria and more severe glomerular and tubular damage compared to the control and STZ-SD groups. These changes were accompanied by increased inflammatory and oxidative stress markers, highlighting the harmful effects of high-protein intake on renal injury. Our findings suggest that the STZ-HPD model could be a valuable tool for studying DN pathophysiology and evaluating therapeutic interventions, providing a new approach for preclinical research.