Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,163
result(s) for
"host-virus interactions"
Sort by:
A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators
by
Hosaka, Toshiaki
,
Shirouzu, Mikako
,
Olson, Daniel K.
in
Algae
,
BASIC BIOLOGICAL SCIENCES
,
Biodegradation
2019
Giant viruses are remarkable for their large genomes, often rivaling those of small bacteria, and for having genes thought exclusive to cellular life. Most isolated to date infect nonmarine protists, leaving their strategies and prevalence in marine environments largely unknown. Using eukaryotic single-cell metagenomics in the Pacific, we discovered a Mimiviridae lineage of giant viruses, which infects choanoflagellates, widespread protistan predators related to metazoans. The ChoanoVirus genomes are the largest yet from pelagic ecosystems, with 442 of 862 predicted proteins lacking known homologs. They are enriched in enzymes formodifying organic compounds, including degradation of chitin, an abundant polysaccharide in oceans, and they encode 3 divergent type-1 rhodopsins (VirR) with distinct evolutionary histories from those that capture sunlight in cellular organisms. One (VirRDTS) is similar to the only other putative rhodopsin from a virus (PgV) with a known host (a marine alga). Unlike the algal virus, ChoanoViruses encode the entire pigment biosynthesis pathway and cleavage enzyme for producing the required chromophore, retinal. We demonstrate that the rhodopsin shared by ChoanoViruses and PgV binds retinal and pumps protons. Moreover, our 1.65-Å resolved VirRDTS crystal structure and mutational analyses exposed differences from previously characterized type-1 rhodopsins, all of which come from cellular organisms. Multiple VirR types are present in metagenomes from across surface oceans, where they are correlated with and nearly as abundant as a canonical marker gene from Mimiviridae . Our findings indicate that light-dependent energy transfer systems are likely common components of giant viruses of photosynthetic and phagotrophic unicellular marine eukaryotes.
Journal Article
The Role of Heparan Sulfate Proteoglycans as an Attachment Factor for Rabies Virus Entry and Infection
2018
This study demonstrated that cellular heparan sulfate functions as the attachment host factor for rabies virus infection through interaction with the viral glycoprotein.
Abstract
Rabies virus (RABV) is the causative agent of fatal neurological disease. Cellular attachment is the initial and essential step for viral infections. Although extensive studies have demonstrated that RABV uses various target cell molecules to mediate infection, no specific molecule has been identified as an attachment factor for RABV infection. Here we demonstrate that cellular heparan sulfate (HS) supports RABV adhesion and subsequent entry into target cells. Enzymatic removal of HS reduced cellular susceptibility to RABV infection, and heparin, a highly sulfated form of HS, blocked viral adhesion and infection. The direct binding between RABV glycoprotein and heparin was demonstrated, and this interaction was shown to require HS N- and 6-O-sulfation. We also revealed that basic amino acids in the ectodomain of RABV glycoprotein serve as major determinants for the RABV–HS interaction. Collectively, our study highlights a previously undescribed role of HS as an attachment factor for RABV infection.
Journal Article
Diverse Functions of Polyamines in Virus Infection
2020
As obligate intracellular parasites, viruses rely on host cells for the building blocks of progeny viruses. Metabolites such as amino acids, nucleotides, and lipids are central to viral proteins, genomes, and envelopes, and the availability of these molecules can restrict or promote infection. Polyamines, comprised of putrescine, spermidine, and spermine in mammalian cells, are also critical for virus infection. Polyamines are small, positively charged molecules that function in transcription, translation, and cell cycling. Initial work on the function of polyamines in bacteriophage infection illuminated these molecules as critical to virus infection. In the decades since early virus-polyamine descriptions, work on diverse viruses continues to highlight a role for polyamines in viral processes, including genome packaging and viral enzymatic activity. On the host side, polyamines function in the response to virus infection. Thus, viruses and hosts compete for polyamines, which are a critical resource for both. Pharmacologically targeting polyamines, tipping the balance to favor the host and restrict virus replication, holds significant promise as a broad-spectrum antiviral strategy.
Journal Article
Viral infection of the marine alga Emiliania huxleyi triggers lipidome remodeling and induces the production of highly saturated triacylglycerol
by
Rosenwasser, Shilo
,
Schatz, Daniella
,
Vardi, Assaf
in
Aquatic Organisms - metabolism
,
Aquatic Organisms - virology
,
Biofuels
2016
Viruses that infect marine photosynthetic microorganisms are major ecological and evolutionary drivers of microbial food webs, estimated to turn over more than a quarter of the total photosynthetically fixed carbon. Viral infection of the bloom‐forming microalga Emiliania huxleyi induces the rapid remodeling of host primary metabolism, targeted towards fatty acid metabolism. We applied a liquid chromatography‐mass spectrometry (LC‐MS)‐based lipidomics approach combined with imaging flow cytometry and gene expression profiling to explore the impact of viral‐induced metabolic reprogramming on lipid composition. Lytic viral infection led to remodeling of the cellular lipidome, by predominantly inducing the biosynthesis of highly saturated triacylglycerols (TAGs), coupled with a significant accumulation of neutral lipids within lipid droplets. Furthermore, TAGs were found to be a major component (77%) of the lipidome of isolated virions. Interestingly, viral‐induced TAGs were significantly more saturated than TAGs produced under nitrogen starvation. This study highlights TAGs as major products of the viral‐induced metabolic reprogramming during the host–virus interaction and indicates a selective mode of membrane recruitment during viral assembly, possibly by budding of the virus from specialized subcellular compartments. These findings provide novel insights into the role of viruses infecting microalgae in regulating metabolism and energy transfer in the marine environment and suggest their possible biotechnological application in biofuel production.
Journal Article
Immune lag is a major cost of prokaryotic adaptive immunity during viral outbreaks
2021
Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas adaptive immune systems enable bacteria and archaea to efficiently respond to viral pathogens by creating a genomic record of previous encounters. These systems are broadly distributed across prokaryotic taxa, yet are surprisingly absent in a majority of organisms, suggesting that the benefits of adaptive immunity frequently do not outweigh the costs. Here, combining experiments and models, we show that a delayed immune response which allows viruses to transiently redirect cellular resources to reproduction, which we call ‘immune lag’, is extremely costly during viral outbreaks, even to completely immune hosts. Critically, the costs of lag are only revealed by examining the early, transient dynamics of a host–virus system occurring immediately after viral challenge. Lag is a basic parameter of microbial defence, relevant to all intracellular, post-infection antiviral defence systems, that has to-date been largely ignored by theoretical and experimental treatments of host-phage systems.
Journal Article
The SARS-CoV-2 Exerts a Distinctive Strategy for Interacting with the ACE2 Human Receptor
by
Linial, Michal
,
Brielle, Esther S.
,
Schneidman-Duhovny, Dina
in
ACE2
,
Angiotensin converting enzyme
,
Angiotensin-Converting Enzyme 2
2020
The COVID-19 disease has plagued over 200 countries with over three million cases and has resulted in over 200,000 deaths within 3 months. To gain insight into the high infection rate of the SARS-CoV-2 virus, we compare the interaction between the human ACE2 receptor and the SARS-CoV-2 spike protein with that of other pathogenic coronaviruses using molecular dynamics simulations. SARS-CoV, SARS-CoV-2, and HCoV-NL63 recognize ACE2 as the natural receptor but present a distinct binding interface to ACE2 and a different network of residue–residue contacts. SARS-CoV and SARS-CoV-2 have comparable binding affinities achieved by balancing energetics and dynamics. The SARS-CoV-2–ACE2 complex contains a higher number of contacts, a larger interface area, and decreased interface residue fluctuations relative to the SARS-CoV–ACE2 complex. These findings expose an exceptional evolutionary exploration exerted by coronaviruses toward host recognition. We postulate that the versatility of cell receptor binding strategies has immediate implications for therapeutic strategies.
Journal Article
Glycan Recognition in Human Norovirus Infections
by
Ramani, Sasirekha
,
Prasad, B. V. Venkataram
,
Estes, Mary K.
in
Animals
,
Antigens
,
binding specificity
2021
Recognition of cell-surface glycans is an important step in the attachment of several viruses to susceptible host cells. The molecular basis of glycan interactions and their functional consequences are well studied for human norovirus (HuNoV), an important gastrointestinal pathogen. Histo-blood group antigens (HBGAs), a family of fucosylated carbohydrate structures that are present on the cell surface, are utilized by HuNoVs to initially bind to cells. In this review, we describe the discovery of HBGAs as genetic susceptibility factors for HuNoV infection and review biochemical and structural studies investigating HuNoV binding to different HBGA glycans. Recently, human intestinal enteroids (HIEs) were developed as a laboratory cultivation system for HuNoV. We review how the use of this novel culture system has confirmed that fucosylated HBGAs are necessary and sufficient for infection by several HuNoV strains, describe mechanisms of antibody-mediated neutralization of infection that involve blocking of HuNoV binding to HBGAs, and discuss the potential for using the HIE model to answer unresolved questions on viral interactions with HBGAs and other glycans.
Journal Article
The Multifarious Role of 14-3-3 Family of Proteins in Viral Replication
2020
The 14-3-3 proteins are a family of ubiquitous and exclusively eukaryotic proteins with an astoundingly significant number of binding partners. Their binding alters the activity, stability, localization, and phosphorylation state of a target protein. The association of 14-3-3 proteins with the regulation of a wide range of general and specific signaling pathways suggests their crucial role in health and disease. Recent studies have linked 14-3-3 to several RNA and DNA viruses that may contribute to the pathogenesis and progression of infections. Therefore, comprehensive knowledge of host–virus interactions is vital for understanding the viral life cycle and developing effective therapeutic strategies. Moreover, pharmaceutical research is already moving towards targeting host proteins in the control of virus pathogenesis. As such, targeting the right host protein to interrupt host–virus interactions could be an effective therapeutic strategy. In this review, we generated a 14-3-3 protein interactions roadmap in viruses, using the freely available Virusmentha network, an online virus–virus or virus–host interaction tool. Furthermore, we summarize the role of the 14-3-3 family in RNA and DNA viruses. The participation of 14-3-3 in viral infections underlines its significance as a key regulator for the expression of host and viral proteins.
Journal Article
Differentiation-dependent proximity proteomics identifies novel host factors linked to HPV16 E2 function
by
Rijal, Arjun
,
Witt, Austin
,
Wang, Xu
in
Host-Virus Protein Interactions
,
Hpv Life Cycle
,
Hpv Replication
2026
Human papillomaviruses (HPVs) establish persistent infections in stratified epithelia and rely on host DNA damage and repair factors to support their replication. The E2 protein is central to viral genome replication and maintenance and depends heavily on its interaction with the host factor TOPBP1 for these functions. Here, we define the E2 and TOPBP1 interactomes in differentiating keratinocytes and identify nucleolin (NCL) as a critical differentiation- and TOPBP1-dependent E2 partner required for episomal genome stability. These findings expand the understanding of how HPV16 coordinates viral replication with host chromatin and DNA repair networks, uncovering a cooperative E2–TOPBP1–NCL axis that may represent a new target for antiviral intervention.
Journal Article
Identification and characterization of host miRNAs that target the mouse mammary tumour virus (MMTV) genome
by
Mustafa, Farah
,
Panicker, Neena G.
,
Rizvi, Tahir A.
in
Animals
,
Antiviral agents
,
Binding sites
2024
The intricate interplay between viruses and hosts involves microRNAs (miRNAs) to regulate gene expression by targeting cellular/viral messenger RNAs (mRNAs). Mouse mammary tumour virus (MMTV), the aetiological agent of breast cancer and leukaemia/lymphomas in mice, provides an ideal model to explore how viral and host miRNAs interact to modulate virus replication and tumorigenesis. We previously reported dysregulation of host miRNAs in MMTV-infected mammary glands and MMTV-induced tumours, suggesting a direct interaction between MMTV and miRNAs. To explore this further, we systematically examined all potential interactions between host miRNAs and the MMTV genome using advanced prediction tools. Leveraging miRNA sequencing data from MMTV-expressing cells, we identified dysregulated miRNAs capable of targeting MMTV. Docking analysis validated the interaction of three dysregulated miRNAs with the MMTV genome, followed by confirmation with RNA immunoprecipitation assays. We further identified host targets of these miRNAs using mRNA sequencing data from MMTV-expressing cells. These findings should enhance our understanding of how MMTV replicates and interacts with the host to induce cancer in mice, a model important for cancer research. Given MMTV’s potential zoonosis and association with human breast cancer/lymphomas, if confirmed, our work could further lead to novel miRNA-based antivirals/therapeutics to prevent possible MMTV transmission and associated cancers in humans.
Journal Article