Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
24
result(s) for
"how to be a stunt double"
Sort by:
The thrill makers
2012
Well before Evel Knievel or Hollywood stuntmen, reality television or the X Games, North America had a long tradition of stunt performance, of men (and some women) who sought media attention and popular fame with public feats of daring. Many of these feats—jumping off bridges, climbing steeples and buildings, swimming incredible distances, or doing tricks with wild animals—had their basis in the manual trades or in older entertainments like the circus. In The Thrill Makers, Jacob Smith shows how turn-of-the-century bridge jumpers, human flies, lion tamers, and stunt pilots first drew crowds to their spectacular displays of death-defying action before becoming a crucial, yet often invisible, component of Hollywood film stardom. Smith explains how these working-class stunt performers helped shape definitions of American manhood, and pioneered a form of modern media celebrity that now occupies an increasingly prominent place in our contemporary popular culture.
A complex virome unveiled by deep sequencing analysis of RNAs from a French Pinot Noir grapevine exhibiting strong leafroll symptoms
by
Biologie du fruit et pathologie (BFP) ; Université Bordeaux Segalen - Bordeaux 2-Institut National de la Recherche Agronomique (INRA)-Université Sciences et Technologies - Bordeaux 1 (UB)
,
Santé de la vigne et qualité du vin (SVQV) ; Institut National de la Recherche Agronomique (INRA)-Université de Strasbourg (UNISTRA)
,
Reinbold, Catherine
in
Agricultural sciences
,
Biomedical and Life Sciences
,
Biomedicine
2018
We have characterized the virome of a grapevine Pinot Noir accession (P70) that displayed, over the year, very stable and strong leafroll symptoms. For this, we have used two extraction methods (dsRNA and total RNA) coupled with the high throughput sequencing (HTS) Illumina technique. While a great disparity in viral sequences were observed, both approaches gave similar results, revealing a very complex infection status. Five virus and viroid isolates [Grapevine leafroll-associated viruse-1 (GLRaV-1), Grapevine virus A (GVA), Grapevine rupestris stem pitting-associated virus (GRSPaV), Hop stunt viroid (HSVd) and Grapevine yellow speckle viroid 1 (GYSVd1)] were detected in P70 with a grand total of eleven variants being identified and de novo assembled. A comparison between both extraction methods regarding their power to detect viruses and the ease of genome assembly is also provided.
Journal Article
The role of co-opted ESCRT proteins and lipid factors in protection of tombusviral double-stranded RNA replication intermediate against reconstituted RNAi in yeast
by
Kovalev, Nikolay
,
Li, Zhenghe
,
Nagy, Peter D.
in
Biology and Life Sciences
,
Bushy stunt
,
Clonal deletion
2017
Reconstituted antiviral defense pathway in surrogate host yeast is used as an intracellular probe to further our understanding of virus-host interactions and the role of co-opted host factors in formation of membrane-bound viral replicase complexes in protection of the viral RNA against ribonucleases. The inhibitory effect of the RNA interference (RNAi) machinery of S. castellii, which only consists of the two-component DCR1 and AGO1 genes, was measured against tomato bushy stunt virus (TBSV) in wild type and mutant yeasts. We show that deletion of the co-opted ESCRT-I (endosomal sorting complexes required for transport I) or ESCRT-III factors makes TBSV replication more sensitive to the RNAi machinery in yeast. Moreover, the lack of these pro-viral cellular factors in cell-free extracts (CFEs) used for in vitro assembly of the TBSV replicase results in destruction of dsRNA replication intermediate by a ribonuclease at the 60 min time point when the CFE from wt yeast has provided protection for dsRNA. In addition, we demonstrate that co-opted oxysterol-binding proteins and membrane contact sites, which are involved in enrichment of sterols within the tombusvirus replication compartment, are required for protection of viral dsRNA. We also show that phosphatidylethanolamine level influences the formation of RNAi-resistant replication compartment. In the absence of peroxisomes in pex3Δ yeast, TBSV subverts the ER membranes, which provide as good protection for TBSV dsRNA against RNAi or ribonucleases as the peroxisomal membranes in wt yeast. Altogether, these results demonstrate that co-opted protein factors and usurped lipids are exploited by tombusviruses to build protective subcellular environment against the RNAi machinery and possibly other cellular ribonucleases.
Journal Article
Characterization of a DCL2-Insensitive Tomato Bushy Stunt Virus Isolate Infecting Arabidopsis thaliana
by
Altenbach, Denise
,
Erhardt, Mathieu
,
Incarbone, Marco
in
Antiviral drugs
,
Arabidopsis
,
Arabidopsis - genetics
2020
Tomato bushy stunt virus (TBSV), the type member of the genus Tombusvirus in the family Tombusviridae is one of the best studied plant viruses. The TBSV natural and experimental host range covers a wide spectrum of plants including agricultural crops, ornamentals, vegetables and Nicotiana benthamiana. However, Arabidopsis thaliana, the well-established model organism in plant biology, genetics and plant–microbe interactions is absent from the list of known TBSV host plant species. Most of our recent knowledge of the virus life cycle has emanated from studies in Saccharomyces cerevisiae, a surrogate host for TBSV that lacks crucial plant antiviral mechanisms such as RNA interference (RNAi). Here, we identified and characterized a TBSV isolate able to infect Arabidopsis with high efficiency. We demonstrated by confocal and 3D electron microscopy that in Arabidopsis TBSV-BS3Ng replicates in association with clustered peroxisomes in which numerous spherules are induced. A dsRNA-centered immunoprecipitation analysis allowed the identification of TBSV-associated host components including DRB2 and DRB4, which perfectly localized to replication sites, and NFD2 that accumulated in larger viral factories in which peroxisomes cluster. By challenging knock-out mutants for key RNAi factors, we showed that TBSV-BS3Ng undergoes a non-canonical RNAi defensive reaction. In fact, unlike other RNA viruses described, no 22nt TBSV-derived small RNA are detected in the absence of DCL4, indicating that this virus is DCL2-insensitive. The new Arabidopsis-TBSV-BS3Ng pathosystem should provide a valuable new model for dissecting plant–virus interactions in complement to Saccharomyces cerevisiae.
Journal Article
Viral RNase3 co-localizes and interacts with the antiviral defense protein SGS3 in plant cells
by
4100100213
,
Haikonen, Tuuli
,
Ala-Poikela, M
in
Antiviral drugs
,
Arabidopsis thaliana
,
Biology and life sciences
2016
Sweet potato chlorotic stunt virus (SPCSV; family Closteroviridae) encodes a Class 1 RNase III endoribonuclease (RNase3) that suppresses post-transcriptional RNA interference (RNAi) and eliminates antiviral defense in sweetpotato plants (Ipomoea batatas). For RNAi suppression, RNase3 cleaves double-stranded small interfering RNAs (ds-siRNA) and long dsRNA to fragments that are too short to be utilized in RNAi. However, RNase3 can suppress only RNAi induced by sense RNA. Sense-mediated RNAi involves host suppressor of gene silencing 3 (SGS3) and RNA-dependent RNA polymerase 6 (RDR6). In this study, subcellular localization and host interactions of RNase3 were studied in plant cells. RNase3 was found to interact with SGS3 of sweetpotato and Arabidopsis thaliana when expressed in leaves, and it localized to SGS3/RDR6 bodies in the cytoplasm of leaf cells and protoplasts. RNase3 was also detected in the nucleus. Co-expression of RNase3 and SGS3 in leaf tissue enhanced the suppression of RNAi, as compared with expression of RNase3 alone. These results suggest additional mechanisms needed for efficient RNase3-mediated suppression of RNAi and provide new information about the subcellular context and phase of the RNAi pathway in which RNase3 realizes RNAi suppression.
Journal Article
Elimination of antiviral defense by viral RNase III
by
Valkonen, Jari P.T
,
Untiveros, Milton
,
Kreuze, Jan F
in
Agricultural Science
,
Antigens
,
Antivirals
2009
Sweet potato (Ipomoea batatas) is an important subsistence and famine reserve crop grown in developing countries where Sweet potato chlorotic stunt virus (SPCSV; Closteroviridae), a single-stranded RNA (ssRNA) crinivirus, synergizes unrelated viruses in co-infected sweet potato plants. The most severe disease and yield losses are caused by co-infection with SPCSV and a potyvirus, Sweet potato feathery mottle virus (SPFMV; Potyviridae). Potyviruses synergize unrelated viruses by suppression of RNA silencing with the P1/HC-Pro polyprotein; however, the SPCSV-SPFMV synergism is unusual in that the potyvirus is the beneficiary. Our data show that transformation of an SPFMV-resistant sweet potato variety with the double-stranded RNA (dsRNA)-specific class 1 RNA endoribonuclease III (RNase3) of SPCSV broke down resistance to SPFMV, leading to high accumulation of SPFMV antigen and severe disease symptoms similar to the synergism in plants co-infected with SPCSV and SPFMV. RNase3-transgenic sweet potatoes also accumulated higher concentrations of 2 other unrelated viruses and developed more severe symptoms than non-transgenic plants. In leaves, RNase3 suppressed ssRNA-induced gene silencing (RNAi) in an endonuclease activity-dependent manner. It cleaved synthetic double-stranded small interfering RNAs (siRNAs) of 21, 22, and 24 bp in vitro to products of approximately 14 bp that are inactive in RNAi. It also affected total siRNA isolated from SPFMV-infected sweet potato plants, suggesting a viral mechanism for suppression of RNAi by cleavage of siRNA. Results implicate RNase3 in suppression of antiviral defense in sweet potato plants and reveal RNase3 as a protein that mediates viral synergism with several unrelated viruses, a function previously described only for P1/HC-Pro.
Journal Article
A Diverse Virome of Leafroll-Infected Grapevine Unveiled by dsRNA Sequencing
2020
Quebec is the third-largest wine grape producing province in Canada, and the industry is constantly expanding. Traditionally, 90% of the grapevine cultivars grown in Quebec were winter hardy and largely dominated by interspecific hybrid Vitis sp. cultivars. Over the years, the winter protection techniques adopted by growers and climate changes have offered an opportunity to establish V. vinifera L. cultivars (e.g., Pinot noir). We characterized the virome of leafroll-infected interspecific hybrid cultivar and compared it to the virome of V. vinifera cultivar to support and facilitate the transition of the industry. A dsRNA sequencing method was used to sequence symptomatic and asymptomatic grapevine leaves of different cultivars. The results suggested a complex virome in terms of composition, abundance, richness, and phylogenetic diversity. Three viruses, grapevine Rupestris stem pitting-associated virus, grapevine leafroll-associated virus (GLRaV) 3 and 2 and hop stunt viroid (HSVd) largely dominated the virome. However, their presence and abundance varied among grapevine cultivars. The symptomless grapevine cultivar Vidal was frequently infected by multiple virus and viroid species and different strains of the same virus, including GLRaV-3 and 2. Our data show that viruses and viroids associated with the highest number of grapevines expressing symptoms included HSVd, GLRaV-3 and GLRaV-2, in gradient order. However, co-occurrence analysis revealed that the presence of GLRaV species was randomly associated with the development of virus-like symptoms. These findings and their implications for grapevine leafroll disease management are discussed.
Journal Article
Grapevine Virome of the Don Ampelographic Collection in Russia Has Concealed Five Novel Viruses
by
Vinogradova, Svetlana
,
Karpova, Daria
,
Belkina, Daria
in
Alphapartitivirus
,
Bioinformatics
,
Cultivars
2023
In this study, an analysis of the virome of 51 grapevines from the Don ampelographic collection named after Ya. I. Potapenko (Russia) was performed using high-throughput sequencing of total RNA. A total of 20 previously described grapevine viruses and 4 viroids were identified. The most detected were grapevine rupestris stem pitting-associated virus (98%), hop stunt viroid (98%), grapevine Pinot gris virus (96%), grapevine yellow speckle viroid 1 (94%), and grapevine fleck virus (GFkV, 80%). Among the economically significant viruses, the most present were grapevine leafroll-associated virus 3 (37%), grapevine virus A (24%), and grapevine leafroll-associated virus 1 (16%). For the first time in Russia, a grapevine-associated tymo-like virus (78%) was detected. After a bioinformatics analysis, 123 complete or nearly complete viral genomes and 64 complete viroid genomes were assembled. An analysis of the phylogenetic relationships with reported global isolates was performed. We discovered and characterized the genomes of five novel grapevine viruses: bipartite dsRNA grapevine alphapartitivirus (genus Alphapartitivirus, family Partitiviridae), bipartite (+) ssRNA grapevine secovirus (genus Fabavirus, family Secoviridae) and three (+) ssRNA grapevine umbra-like viruses 2, -3, -4 (which phylogenetically occupy an intermediate position between representatives of the genus Umbravirus and umbravirus-like associated RNAs).
Journal Article
Non-structural protein 1 from avian influenza virus H9N2 is an efficient RNA silencing suppressor with characteristics that differ from those of Tomato bushy stunt virus p19
2018
Non-structural protein 1 (NS1) of influenza A virus is a multifunctional dimeric protein that contains a conserved N-terminal RNA binding domain. Studies have shown that NS1 suppresses RNA silencing and the NS1 proteins encoded by different influenza A virus strains exhibit differential RNA silencing suppression activities. In this study, we showed that the NS1 protein from avian influenza virus (AIV) H9N2 suppressed systemic RNA silencing induced by sense RNA or dsRNA. It resulted in more severe Potato virus X symptom, but could not reverse established systemic green fluorescent protein silencing in Nicotiana benthamiana. In addition, its systemic silencing suppression activity was much weaker than that of p19. The local silencing suppression activity of AIV H9N2 NS1 was most powerful at 7 dpi and was even stronger than that of p19. And the inhibition ability to RNA silencing of NS1 is stronger than that of p19 in human cells. Collectively, these results indicate that AIV H9N2 NS1 is an effective RNA silencing suppressor that likely targets downstream step(s) of dsRNA formation at an early stage in RNA silencing. Although NS1 and p19 both bind siRNA, their suppression mechanisms seem to differ because of differences in their suppression activities at various times post-infiltration and because p19 can reverse established systemic RNA silencing, but NS1 cannot.
Journal Article