Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,621 result(s) for "hyperbaric oxygen therapy"
Sort by:
Intervention modalities for brain fog caused by long-COVID: systematic review of the literature
Individuals suffering from long-COVID can present with “brain fog”, which is characterized by a range of cognitive impairments, such as confusion, short-term memory loss, and difficulty concentrating. To date, several potential interventions for brain fog have been considered. Notably, no systematic review has comprehensively discussed the impact of each intervention type on brain fog symptoms. We included studies on adult (aged > 18 years) individuals with proven long- COVID brain-fog symptoms from PubMed, MEDLINE, Central, Scopus, and Embase. A search limit was set for articles published between 01/2020 and 31/12/2023. We excluded studies lacking an objective assessment of brain fog symptoms and patients with preexisting neurological diseases that affected cognition before COVID-19 infection. This review provided relevant information from 17 studies. The rehabilitation studies utilized diverse approaches, leading to a range of outcomes in terms of the effectiveness of the interventions. Six studies described noninvasive brain stimulation, and all showed improvement in cognitive ability. Three studies described hyperbaric oxygen therapy, all of which showed improvements in cognitive assessment tests and brain perfusion. Two studies showed that the use of Palmitoylethanolamide and Luteolin (PEA-LUT) improved cognitive impairment. Noninvasive brain stimulation and hyperbaric oxygen therapy showed promising results in the treatment of brain fog symptoms caused by long-COVID, with improved perfusion and cortical excitability. Furthermore, both rehabilitation strategies and PEA-LUT administration have been associated with improvements in symptoms of brain fog. Future studies should explore combinations of interventions and include longer follow-up periods to assess the long-term effects of these treatments.
Analysis of factors associated with the development of delayed encephalopathy following acute carbon monoxide poisoning
In this study, we analyzed the factors influencing the development of delayed encephalopathy in patients with acute carbon monoxide poisoning (ACOP) (DEACMP) following conventional treatment such as hyperbaric oxygen therapy (HBOT). Between January 2012 and January 2022, we retrospectively analyzed 775 patients with ACOP, who were admitted to the Second Department of Rehabilitation Medicine and received HBOT in the Second Hospital of Hebei Medical University. These patients were divided into the non-DEACMP and DEACMP groups based on their follow-up; we then compared the general data, clinical characteristics, admission examination, and treatment between the two groups to identify risk factors for the development of DEACMP. The DEACMP group comprised of 168 cases, while the non-DEACMP group consisted of 607 cases. Univariate analysis showed that there were 20 possible prognostic factors in the non-DEACMP and DEACMP groups. The results of multivariable regression analyses suggested that the occurrence of DEACMP was significantly correlated with advanced age, the combination of multiple medical histories, the duration of CO exposure, the duration of coma, poisoning degree, the Interval between ACOP and the first HBOT, the total number of HBOTs, and the combination with rehabilitation treatment. DEACMP patients who are older, have more comorbidities, prolonged CO exposure, prolonged coma, severe intoxication, long intervals between ACOP and the first HBOT, fewer HBOT treatments, and who are not treated with a combination of rehabilitative therapies have a poor prognosis.
HBO treatment enhances motor function and modulates pain development after sciatic nerve injury via protection the mitochondrial function
Background Peripheral nerve injury can cause neuroinflammation and neuromodulation that lead to mitochondrial dysfunction and neuronal apoptosis in the dorsal root ganglion (DRG) and spinal cord, contributing to neuropathic pain and motor dysfunction. Hyperbaric oxygen therapy (HBOT) has been suggested as a potential therapeutic tool for neuropathic pain and nerve injury. However, the specific cellular and molecular mechanism by which HBOT modulates the development of neuropathic pain and motor dysfunction through mitochondrial protection is still unclear. Methods Mechanical and thermal allodynia and motor function were measured in rats following sciatic nerve crush (SNC). The HBO treatment (2.5 ATA) was performed 4 h after SNC and twice daily (12 h intervals) for seven consecutive days. To assess mitochondrial function in the spinal cord (L2–L6), high-resolution respirometry was measured on day 7 using the OROBOROS-O2k. In addition, RT-PCR and Immunohistochemistry were performed at the end of the experiment to assess neuroinflammation, neuromodulation, and apoptosis in the DRG (L3–L6) and spinal cord (L2–L6). Results HBOT during the early phase of the SNC alleviates mechanical and thermal hypersensitivity and motor dysfunction. Moreover, HBOT modulates neuroinflammation, neuromodulation, mitochondrial stress, and apoptosis in the DRG and spinal cord. Thus, we found a significant reduction in the presence of macrophages/microglia and MMP-9 expression, as well as the transcription of pro-inflammatory cytokines (TNFa, IL-6, IL-1b) in the DRG and (IL6) in the spinal cord of the SNC group that was treated with HBOT compared to the untreated group. Notable, the overexpression of the TRPV1 channel, which has a high Ca 2+ permeability, was reduced along with the apoptosis marker (cleaved-Caspase3) and mitochondrial stress marker (TSPO) in the DRG and spinal cord of the HBOT group. Additionally, HBOT prevents the reduction in mitochondrial respiration, including non-phosphorylation state, ATP-linked respiration, and maximal mitochondrial respiration in the spinal cord after SNC. Conclusion Mitochondrial dysfunction in peripheral neuropathic pain was found to be mediated by neuroinflammation and neuromodulation. Strikingly, our findings indicate that HBOT during the critical period of the nerve injury modulates the transition from acute to chronic pain via reducing neuroinflammation and protecting mitochondrial function, consequently preventing neuronal apoptosis in the DRG and spinal cord.
Thermal Effects of Topical Hyperbaric Oxygen Therapy in Hard-to-Heal Wounds—A Pilot Study
Clinical studies have been performed to evaluate the thermal response of topical hyperbaric oxygen therapy (THBOT) in patients suffering from hard-to-heal wounds diagnosed as venous leg ulcers located on their lower extremities. It was found that this therapy leads to a temperature decrease in areas around the wound. Moreover, a minor temperature differentiation between all areas was seen in the third period of topical hyperbaric oxygen therapy (THBOT) that may suggest that microcirculation and thermoregulation improvement start the healing process. On the other hand, the results of the conducted studies seem to prove that thermal imaging may provide a safe and effective method of analyzing wound healing of hard-to-heal wounds being treated with THBOT. This is the first study that tries to show the possibilities of a very new method by evaluating treatment of hard-to-heal wounds using thermal imaging, similar to the hyperbaric oxygen therapy effects evaluated by thermal imaging and described previously. However, the first clinical results showed a decrease in temperature due to the THBOT session and some qualitative similarities in the decrease in temperature differentiation between the studied areas and the temperature effects obtained due to hyperbaric oxygen therapy.
Simultaneous hyperbaric oxygen therapy during systemic chemotherapy reverses chemotherapy-induced peripheral neuropathy by inhibiting TLR4 and TRPV1 activation in the central and peripheral nervous system
Background and objectivesChemotherapy-induced peripheral neuropathy (CIPN) is considered one of the most common sequelae in patients with cancer who experience consistent abnormal sensations or pain symptoms during or after paclitaxel (PAC) chemotherapy. Transient receptor potential vanilloid 1 (TRPV1) and toll-like receptor 4 (TLR4) have been reported to interact in the nervous system in patients with CIPN. The antinociceptive effects of hyperbaric oxygen therapy (HBOT) on CIPN was demonstrated in this study through behavior tests. Using a CIPN rat model, we examined the effects of simultaneous HBOT (SHBOT) administration during chemotherapy and discovered that SHBOT achieved better reversal effects than chemotherapy alone.Materials and methodsTwenty-four rats were randomly allocated to four groups: control, PAC, SHBOT, and HBOT after PAC groups. Behavior tests were performed to evaluate mechanical allodynia and thermal hyperalgesia status. Tissues from the spinal cord and dorsal root ganglions were collected, and TLR4 and TRPV1 expression and microglial activation were investigated through immunofluorescence (IF) staining.ResultsThe mechanical and thermal behavior tests revealed that HBOT intervention during PAC treatment led to the early alleviation of CIPN symptoms and inhibited CIPN deterioration. IF staining revealed that TLR4, TRPV1, and microglial activation were all upregulated in PAC-injected rats and exhibited early and significant downregulation in SHBOT-treated rats.ConclusionThis study is the first to demonstrate that the use of SHBOT during PAC treatment has potential for the early suppression of CIPN initiation and deterioration, indicating that it can alleviate CIPN symptoms and may reverse CIPN in patients undergoing systemic chemotherapy.
Hyperbaric Oxygen Therapy Alleviates Memory and Motor Impairments Following Traumatic Brain Injury via the Modulation of Mitochondrial-Dysfunction-Induced Neuronal Apoptosis in Rats
Traumatic brain injury (TBI) is a leading cause of morbidity and mortality in young adults, characterized by primary and secondary injury. Primary injury is the immediate mechanical damage, while secondary injury results from delayed neuronal death, often linked to mitochondrial damage accumulation. Hyperbaric oxygen therapy (HBOT) has been proposed as a potential treatment for modulating secondary post-traumatic neuronal death. However, the specific molecular mechanism by which HBOT modulates secondary brain damage through mitochondrial protection remains unclear. Spatial learning, reference memory, and motor performance were measured in rats before and after Controlled Cortical Impact (CCI) injury. The HBOT (2.5 ATA) was performed 4 h following the CCI and twice daily (12 h intervals) for four consecutive days. Mitochondrial functions were assessed via high-resolution respirometry on day 5 following CCI. Moreover, IHC was performed at the end of the experiment to evaluate cortical apoptosis, neuronal survival, and glial activation. The current result indicates that HBOT exhibits a multi-level neuroprotective effect. Thus, we found that HBOT prevents cortical neuronal loss, reduces the apoptosis marker (cleaved-Caspase3), and modulates glial cell proliferation. Furthermore, HBO treatment prevents the reduction in mitochondrial respiration, including non-phosphorylation state, oxidative phosphorylation, and electron transfer capacity. Additionally, a superior motor and spatial learning performance level was observed in the CCI group treated with HBO compared to the CCI group. In conclusion, our findings demonstrate that HBOT during the critical period following the TBI improves cognitive and motor damage via regulating glial proliferation apoptosis and protecting mitochondrial function, consequently preventing cortex neuronal loss.
Ischemia as a common trigger for Alzheimer’s disease
Alzheimer’s disease has various potential etiologies, all culminating in the accumulation of beta -amyloid derivatives and significant cognitive decline. Vascular-related pathology is one of the more frequent etiologies, especially in persons older than 65 years, as vascular risk factors are linked to both cerebrovascular disease and the development of AD. The vascular patho-mechanism includes atherosclerosis, large and small vessel arteriosclerosis, cortical and subcortical infarcts, white matter lesions, and microbleeds. These insults cause hypoperfusion, tissue ischemia, chronic inflammation, neuronal death, gliosis, cerebral atrophy, and accumulation of beta-amyloid and phosphorylated tau proteins. In preclinical studies, hyperbaric oxygen therapy has been shown to reverse brain ischemia, and thus alleviate inflammation, reverse the accumulation of beta-amyloid, induce regeneration of axonal white matter, stimulate axonal growth, promote blood–brain barrier integrity, reduce inflammatory reactions, and improve brain performance. In this perspective article we will summarize the patho-mechanisms induced by brain ischemia and their contribution to the development of AD. We will also review the potential role of interventions that aim to reverse brain ischemia, and discuss their relevance for clinical practice.
Mortality and morbidity in acutely ill adults treated with liberal versus conservative oxygen therapy (IOTA): a systematic review and meta-analysis
Supplemental oxygen is often administered liberally to acutely ill adults, but the credibility of the evidence for this practice is unclear. We systematically reviewed the efficacy and safety of liberal versus conservative oxygen therapy in acutely ill adults. In the Improving Oxygen Therapy in Acute-illness (IOTA) systematic review and meta-analysis, we searched the Cochrane Central Register of Controlled Trials, MEDLINE, Embase, HealthSTAR, LILACS, PapersFirst, and the WHO International Clinical Trials Registry from inception to Oct 25, 2017, for randomised controlled trials comparing liberal and conservative oxygen therapy in acutely ill adults (aged ≥18 years). Studies limited to patients with chronic respiratory diseases or psychiatric disease, patients on extracorporeal life support, or patients treated with hyperbaric oxygen therapy or elective surgery were excluded. We screened studies and extracted summary estimates independently and in duplicate. We also extracted individual patient-level data from survival curves. The main outcomes were mortality (in-hospital, at 30 days, and at longest follow-up) and morbidity (disability at longest follow-up, risk of hospital-acquired pneumonia, any hospital-acquired infection, and length of hospital stay) assessed by random-effects meta-analyses. We assessed quality of evidence using the grading of recommendations assessment, development, and evaluation approach. This study is registered with PROSPERO, number CRD42017065697. 25 randomised controlled trials enrolled 16 037 patients with sepsis, critical illness, stroke, trauma, myocardial infarction, or cardiac arrest, and patients who had emergency surgery. Compared with a conservative oxygen strategy, a liberal oxygen strategy (median baseline saturation of peripheral oxygen [SpO2] across trials, 96% [range 94–99%, IQR 96–98]) increased mortality in-hospital (relative risk [RR] 1·21, 95% CI 1·03–1·43, I2=0%, high quality), at 30 days (RR 1·14, 95% CI 1·01–1·29, I2=0%, high quality), and at longest follow-up (RR 1·10, 95% CI 1·00–1·20, I2=0%, high quality). Morbidity outcomes were similar between groups. Findings were robust to trial sequential, subgroup, and sensitivity analyses. In acutely ill adults, high-quality evidence shows that liberal oxygen therapy increases mortality without improving other patient-important outcomes. Supplemental oxygen might become unfavourable above an SpO2 range of 94–96%. These results support the conservative administration of oxygen therapy. None.
Hyperbaric oxygen therapy improves neurocognitive functions and symptoms of post-COVID condition: randomized controlled trial
Post-COVID-19 condition refers to a range of persisting physical, neurocognitive, and neuropsychological symptoms after SARS-CoV-2 infection. The mechanism can be related to brain tissue pathology caused by virus invasion or indirectly by neuroinflammation and hypercoagulability. This randomized, sham-control, double blind trial evaluated the effect of hyperbaric oxygen therapy (HBOT or HBO2 therapy) on post-COVID-19 patients with ongoing symptoms for at least 3 months after confirmed infection. Seventy-three patients were randomized to receive daily 40 session of HBOT (n = 37) or sham (n = 36). Follow-up assessments were performed at baseline and 1–3 weeks after the last treatment session. Following HBOT, there was a significant group-by-time interaction in global cognitive function, attention and executive function (d = 0.495, p = 0.038; d = 0.477, p = 0.04 and d = 0.463, p = 0.05 respectively). Significant improvement was also demonstrated in the energy domain (d = 0.522, p = 0.029), sleep (d = − 0.48, p = 0.042), psychiatric symptoms (d = 0.636, p = 0.008), and pain interference (d = 0.737, p = 0.001). Clinical outcomes were associated with significant improvement in brain MRI perfusion and microstructural changes in the supramarginal gyrus, left supplementary motor area, right insula, left frontal precentral gyrus, right middle frontal gyrus, and superior corona radiate. These results indicate that HBOT can induce neuroplasticity and improve cognitive, psychiatric, fatigue, sleep and pain symptoms of patients suffering from post-COVID-19 condition. HBOT’s beneficial effect may be attributed to increased brain perfusion and neuroplasticity in regions associated with cognitive and emotional roles.
Hyperbaric Oxygen Treatment: Effects on Mitochondrial Function and Oxidative Stress
Hyperbaric oxygen treatment (HBOT)—the administration of 100% oxygen at atmospheric pressure (ATA) greater than 1 ATA—increases the proportion of dissolved oxygen in the blood five- to twenty-fold. This increase in accessible oxygen places the mitochondrion—the organelle that consumes most of the oxygen that we breathe—at the epicenter of HBOT’s effects. As the mitochondrion is also a major site for the production of reactive oxygen species (ROS), it is possible that HBOT will increase also oxidative stress. Depending on the conditions of the HBO treatment (duration, pressure, umber of treatments), short-term treatments have been shown to have deleterious effects on both mitochondrial activity and production of ROS. Long-term treatment, on the other hand, improves mitochondrial activity and leads to a decrease in ROS levels, partially due to the effects of HBOT, which increases antioxidant defense mechanisms. Many diseases and conditions are characterized by mitochondrial dysfunction and imbalance between ROS and antioxidant scavengers, suggesting potential therapeutic intervention for HBOT. In the present review, we will present current views on the effects of HBOT on mitochondrial function and oxidative stress, the interplay between them and the implications for several diseases.