Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3,408
result(s) for
"hyperspectral data"
Sort by:
Special Issue “Hyperspectral Remote Sensing of Agriculture and Vegetation”
by
Darvishzadeh, Roshanak
,
Huang, Wenjiang
,
Pignatti, Stefano
in
Accuracy
,
administrative management
,
Agricultural land
2020
The advent of up-to-date hyperspectral technologies, and their increasing performance both spectrally and spatially, allows for new and exciting studies and practical applications in agriculture (soils and crops) and vegetation mapping and monitoring atregional (satellite platforms) andwithin-field (airplanes, drones and ground-based platforms) scales. Within this context, the special issue has included eleven international research studies using different hyperspectral datasets (from the Visible to the Shortwave Infrared spectral region) for agricultural soil, crop and vegetation modelling, mapping, and monitoring. Different classification methods (Support Vector Machine, Random Forest, Artificial Neural Network, Decision Tree) and crop canopy/leaf biophysical parameters (e.g., chlorophyll content) estimation methods (partial least squares and multiple linear regressions) have been evaluated. Further, drone-based hyperspectral mapping by combining bidirectional reflectance distribution function (BRDF) model for multi-angle remote sensing and object-oriented classification methods are also examined. A review article on the recent advances of hyperspectral imaging technology and applications in agriculture is also included in this issue. The special issue is intended to help researchers and farmers involved in precision agriculture technology and practices to a better comprehension of strengths and limitations of the application of hyperspectral measurements for agriculture and vegetation monitoring. The studies published herein can be used by the agriculture and vegetation research and management communities to improve the characterization and evaluation of biophysical variables and processes, as well as for a more accurate prediction of plant nutrient using existing and forthcoming hyperspectral remote sensing technologies.
Journal Article
The Future of Hyperspectral Imaging
2019
The Special Issue on hyperspectral imaging (HSI), entitled “The Future of Hyperspectral Imaging”, has published 12 papers. Nine papers are related to specific current research and three more are review contributions: In both cases, the request is to propose those methods or instruments so as to show the future trends of HSI. Some contributions also update specific methodological or mathematical tools. In particular, the review papers address deep learning methods for HSI analysis, while HSI data compression is reviewed by using liquid crystals spectral multiplexing as well as DMD-based Raman spectroscopy. Specific topics explored by using data obtained by HSI include alert on the sprouting of potato tubers, the investigation on the stability of painting samples, the prediction of healing diabetic foot ulcers, and age determination of blood-stained fingerprints. Papers showing advances on more general topics include video approach for HSI dynamic scenes, localization of plant diseases, new methods for the lossless compression of HSI data, the fusing of multiple multiband images, and mixed modes of laser HSI imaging for sorting and quality controls.
Journal Article
Hyperspectral Imaging: A Review on UAV-Based Sensors, Data Processing and Applications for Agriculture and Forestry
2017
Traditional imagery—provided, for example, by RGB and/or NIR sensors—has proven to be useful in many agroforestry applications. However, it lacks the spectral range and precision to profile materials and organisms that only hyperspectral sensors can provide. This kind of high-resolution spectroscopy was firstly used in satellites and later in manned aircraft, which are significantly expensive platforms and extremely restrictive due to availability limitations and/or complex logistics. More recently, UAS have emerged as a very popular and cost-effective remote sensing technology, composed of aerial platforms capable of carrying small-sized and lightweight sensors. Meanwhile, hyperspectral technology developments have been consistently resulting in smaller and lighter sensors that can currently be integrated in UAS for either scientific or commercial purposes. The hyperspectral sensors’ ability for measuring hundreds of bands raises complexity when considering the sheer quantity of acquired data, whose usefulness depends on both calibration and corrective tasks occurring in pre- and post-flight stages. Further steps regarding hyperspectral data processing must be performed towards the retrieval of relevant information, which provides the true benefits for assertive interventions in agricultural crops and forested areas. Considering the aforementioned topics and the goal of providing a global view focused on hyperspectral-based remote sensing supported by UAV platforms, a survey including hyperspectral sensors, inherent data processing and applications focusing both on agriculture and forestry—wherein the combination of UAV and hyperspectral sensors plays a center role—is presented in this paper. Firstly, the advantages of hyperspectral data over RGB imagery and multispectral data are highlighted. Then, hyperspectral acquisition devices are addressed, including sensor types, acquisition modes and UAV-compatible sensors that can be used for both research and commercial purposes. Pre-flight operations and post-flight pre-processing are pointed out as necessary to ensure the usefulness of hyperspectral data for further processing towards the retrieval of conclusive information. With the goal of simplifying hyperspectral data processing—by isolating the common user from the processes’ mathematical complexity—several available toolboxes that allow a direct access to level-one hyperspectral data are presented. Moreover, research works focusing the symbiosis between UAV-hyperspectral for agriculture and forestry applications are reviewed, just before the paper’s conclusions.
Journal Article
Wavelength Extension of the Optimized Asymmetric-Order Vegetation Isoline Equation to Cover the Range from Visible to Near-Infrared
2022
Vegetation isoline equations describe analytical relationships between two reflectances of different wavelengths. Their applications range from retrievals of biophysical parameters to the derivation of the inter-sensor relationships of spectral vegetation indexes. Among the three variants of vegetation isoline equations introduced thus far, the optimized asymmetric-order vegetation isoline equation is the newest and is known to be the most accurate. This accuracy assessment, however, has been performed only for the wavelength pair of red and near-infrared (NIR) bands fixed at ∼655 nm and ∼865 nm, respectively. The objective of this study is to extend this wavelength limitation. An accuracy assessment was therefore performed over a wider range of wavelengths, from 400 to 1200 nm. The optimized asymmetric-order vegetation isoline equation was confirmed to demonstrate the highest accuracy among the three isolines for all the investigated wavelength pairs. The second-best equation, the asymmetric-order isoline equation, which does not include an optimization factor, was not superior to the least-accurate equation (i.e., the first-order isoline equation) in some cases. This tendency was prominent when the reflectances of the two wavelengths were similar. By contrast, the optimized asymmetric-order vegetation isoline showed stable performance throughout this study. A single factor introduced into the optimized asymmetric-order isoline equation was concluded to effectively reduce errors in the isoline for all the wavelength combinations examined in this study.
Journal Article
Auditory Display of Fluorescence Image Data in an In Vivo Tumor Model
by
Sang Hoon Lee
,
Sheen-Woo Lee
,
Zhen Cheng
in
auditory display
,
auditory display; sonification; fluorescence imaging; hyperspectral data
,
fluorescence imaging
2022
Objectives: This research aims to apply an auditory display for tumor imaging using fluorescence data, discuss its feasibility for in vivo tumor evaluation, and check its potential for assisting enhanced cancer perception. Methods: Xenografted mice underwent fluorescence imaging after an injection of cy5.5-glucose. Spectral information from the raw data was parametrized to emphasize the near-infrared fluorescence information, and the resulting parameters were mapped to control a sound synthesis engine in order to provide the auditory display. Drag–click maneuvers using in-house data navigation software-generated sound from regions of interest (ROIs) in vivo. Results: Four different representations of the auditory display were acquired per ROI: (1) audio spectrum, (2) waveform, (3) numerical signal-to-noise ratio (SNR), and (4) sound itself. SNRs were compared for statistical analysis. Compared with the no-tumor area, the tumor area produced sounds with a heterogeneous spectrum and waveform, and featured a higher SNR as well (3.63 ± 8.41 vs. 0.42 ± 0.085, p < 0.05). Sound from the tumor was perceived by the naked ear as high-timbred and unpleasant. Conclusions: By accentuating the specific tumor spectrum, auditory display of fluorescence imaging data can generate sound which helps the listener to detect and discriminate small tumorous conditions in living animals. Despite some practical limitations, it can aid in the translation of fluorescent images by facilitating information transfer to the clinician in in vivo tumor imaging.
Journal Article
Deep Learning for Land Use and Land Cover Classification Based on Hyperspectral and Multispectral Earth Observation Data: A Review
by
Vali, Ava
,
Matteucci, Matteo
,
Comai, Sara
in
Artificial intelligence
,
Classification
,
Deep learning
2020
Lately, with deep learning outpacing the other machine learning techniques in classifying images, we have witnessed a growing interest of the remote sensing community in employing these techniques for the land use and land cover classification based on multispectral and hyperspectral images; the number of related publications almost doubling each year since 2015 is an attest to that. The advances in remote sensing technologies, hence the fast-growing volume of timely data available at the global scale, offer new opportunities for a variety of applications. Deep learning being significantly successful in dealing with Big Data, seems to be a great candidate for exploiting the potentials of such complex massive data. However, there are some challenges related to the ground-truth, resolution, and the nature of data that strongly impact the performance of classification. In this paper, we review the use of deep learning in land use and land cover classification based on multispectral and hyperspectral images and we introduce the available data sources and datasets used by literature studies; we provide the readers with a framework to interpret the-state-of-the-art of deep learning in this context and offer a platform to approach methodologies, data, and challenges of the field.
Journal Article
Estimating Agricultural Soil Moisture Content through UAV-Based Hyperspectral Images in the Arid Region
by
Ding, Jianli
,
Liu, Jie
,
Wang, Jingzhe
in
Agricultural land
,
Agricultural production
,
agricultural soils
2021
Unmanned aerial vehicle (UAV)-based hyperspectral remote sensing is an important monitoring technology for the soil moisture content (SMC) of agroecological systems in arid regions. This technology develops precision farming and agricultural informatization. However, hyperspectral data are generally used in data mining. In this study, UAV-based hyperspectral imaging data with a resolution o 4 cm and totaling 70 soil samples (0–10 cm) were collected from farmland (2.5 × 104 m2) near Fukang City, Xinjiang Uygur Autonomous Region, China. Four estimation strategies were tested: the original image (strategy I), first- and second-order derivative methods (strategy II), the fractional-order derivative (FOD) technique (strategy III), and the optimal fractional order combined with the optimal multiband indices (strategy IV). These strategies were based on the eXtreme Gradient Boost (XGBoost) algorithm, with the aim of building the best estimation model for agricultural SMC in arid regions. The results demonstrated that FOD technology could effectively mine information (with an absolute maximum correlation coefficient of 0.768). By comparison, strategy IV yielded the best estimates out of the methods tested (R2val = 0.921, RMSEP = 1.943, and RPD = 2.736) for the SMC. The model derived from the order of 0.4 within strategy IV worked relatively well among the different derivative methods (strategy I, II, and III). In conclusion, the combination of FOD technology and the optimal multiband indices generated a highly accurate model within the XGBoost algorithm for SMC estimation. This research provided a promising data mining approach for UAV-based hyperspectral imaging data.
Journal Article
Soil Organic Matter Prediction Model with Satellite Hyperspectral Image Based on Optimized Denoising Method
2021
In order to improve the signal-to-noise ratio of the hyperspectral sensors and exploit the potential of satellite hyperspectral data for predicting soil properties, we took MingShui County as the study area, which the study area is approximately 1481 km2, and we selected Gaofen-5 (GF-5) satellite hyperspectral image of the study area to explore an applicable and accurate denoising method that can effectively improve the prediction accuracy of soil organic matter (SOM) content. First, fractional-order derivative (FOD) processing is performed on the original reflectance (OR) to evaluate the optimal FOD. Second, singular value decomposition (SVD), Fourier transform (FT) and discrete wavelet transform (DWT) are used to denoise the OR and optimal FOD reflectance. Third, the spectral indexes of the reflectance under different denoising methods are extracted by optimal band combination algorithm, and the input variables of different denoising methods are selected by the recursive feature elimination (RFE) algorithm. Finally, the SOM content is predicted by a random forest prediction model. The results reveal that 0.6-order reflectance describes more useful details in satellite hyperspectral data. Five spectral indexes extracted from the reflectance under different denoising methods have a strong correlation with the SOM content, which is helpful for realizing high-accuracy SOM predictions. All three denoising methods can reduce the noise in hyperspectral data, and the accuracies of the different denoising methods are ranked DWT > FT > SVD, where 0.6-order-DWT has the highest accuracy (R2 = 0.84, RMSE = 3.36 g kg−1, and RPIQ = 1.71). This paper is relatively novel, in that GF-5 satellite hyperspectral data based on different denoising methods are used to predict SOM, and the results provide a highly robust and novel method for mapping the spatial distribution of SOM content at the regional scale.
Journal Article
How to Learn More? Exploring Kolmogorov–Arnold Networks for Hyperspectral Image Classification
by
Ghamisi, Pedram
,
Hong, Danfeng
,
Jamali, Ali
in
Accuracy
,
Algorithms
,
Artificial neural networks
2024
Convolutional neural networks (CNNs) and vision transformers (ViTs) have shown excellent capability in complex hyperspectral image (HSI) classification. However, these models require a significant number of training data and are computational resources. On the other hand, modern Multi-Layer Perceptrons (MLPs) have demonstrated a great classification capability. These modern MLP-based models require significantly less training data compared with CNNs and ViTs, achieving state-of-the-art classification accuracy. Recently, Kolmogorov–Arnold networks (KANs) were proposed as viable alternatives for MLPs. Because of their internal similarity to splines and their external similarity to MLPs, KANs are able to optimize learned features with remarkable accuracy, in addition to being able to learn new features. Thus, in this study, we assessed the effectiveness of KANs for complex HSI data classification. Moreover, to enhance the HSI classification accuracy obtained by the KANs, we developed and proposed a hybrid architecture utilizing 1D, 2D, and 3D KANs. To demonstrate the effectiveness of the proposed KAN architecture, we conducted extensive experiments on three newly created HSI benchmark datasets: QUH-Pingan, QUH-Tangdaowan, and QUH-Qingyun. The results underscored the competitive or better capability of the developed hybrid KAN-based model across these benchmark datasets over several other CNN- and ViT-based algorithms, including 1D-CNN, 2DCNN, 3D CNN, VGG-16, ResNet-50, EfficientNet, RNN, and ViT.
Journal Article
Retrieval of Water Quality from UAV-Borne Hyperspectral Imagery: A Comparative Study of Machine Learning Algorithms
by
Lu, Qikai
,
Wei, Lifei
,
Li, Zhongqiang
in
Algorithms
,
Artificial intelligence
,
Chemical oxygen demand
2021
The rapidly increasing world population and human activities accelerate the crisis of the limited freshwater resources. Water quality must be monitored for the sustainability of freshwater resources. Unmanned aerial vehicle (UAV)-borne hyperspectral data can capture fine features of water bodies, which have been widely used for monitoring water quality. In this study, nine machine learning algorithms are systematically evaluated for the inversion of water quality parameters including chlorophyll-a (Chl-a) and suspended solids (SS) with UAV-borne hyperspectral data. In comparing the experimental results of the machine learning model on the water quality parameters, we can observe that the prediction performance of the Catboost regression (CBR) model is the best. However, the prediction performances of the Multi-layer Perceptron regression (MLPR) and Elastic net (EN) models are very unsatisfactory, indicating that the MLPR and EN models are not suitable for the inversion of water quality parameters. In addition, the water quality distribution map is generated, which can be used to identify polluted areas of water bodies.
Journal Article