Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
615
result(s) for
"hyperspectral vegetation index"
Sort by:
Fusion of Plant Height and Vegetation Indices for the Estimation of Barley Biomass
2015
Plant biomass is an important parameter for crop management and yield estimation. However, since biomass cannot be determined non-destructively, other plant parameters are used for estimations. In this study, plant height and hyperspectral data were used for barley biomass estimations with bivariate and multivariate models. During three consecutive growing seasons a terrestrial laser scanner was used to establish crop surface models for a pixel-wise calculation of plant height and manual measurements of plant height confirmed the results (R2 up to 0.98). Hyperspectral reflectance measurements were conducted with a field spectrometer and used for calculating six vegetation indices (VIs), which have been found to be related to biomass and LAI: GnyLi, NDVI, NRI, RDVI, REIP, and RGBVI. Furthermore, biomass samples were destructively taken on almost the same dates. Linear and exponential biomass regression models (BRMs) were established for evaluating plant height and VIs as estimators of fresh and dry biomass. Each BRM was established for the whole observed period and pre-anthesis, which is important for management decisions. Bivariate BRMs supported plant height as a strong estimator (R2 up to 0.85), whereas BRMs based on individual VIs showed varying performances (R2: 0.07–0.87). Fused approaches, where plant height and one VI were used for establishing multivariate BRMs, yielded improvements in some cases (R2 up to 0.89). Overall, this study reveals the potential of remotely-sensed plant parameters for estimations of barley biomass. Moreover, it is a first step towards the fusion of 3D spatial and spectral measurements for improving non-destructive biomass estimations.
Journal Article
Comparison of different hyperspectral vegetation indices for canopy leaf nitrogen concentration estimation in rice
by
Cao, Wei-Xing
,
Tian, Yong-Chao
,
Gu, Kai-Jian
in
Agricultural research
,
Agronomy. Soil science and plant productions
,
Animal, plant and microbial ecology
2014
BACKGROUND AND AIMS: Variations in the water and soil background in the signal path can cause variations in canopy spectral reflectance, which leads to uncertainty in estimating the canopy nitrogen (N) status. The primary objective of this study was to explore the optimum vegetation indices that were highly correlated with canopy leaf N concentration (LNC) but less influenced by the canopy leaf area index (LAI) and vegetation coverage (VC) in rice. METHODS: A systematic analysis of the quantitative relationships between various hyperspectral vegetation indices and LNC, VC and LAI was conducted based on 4-year rice field experiments using different rice varieties, N rates and planting densities. New spectral indices were derived to estimate LNC in rice under variable vegetation coverage. RESULTS: Although the newly developed simple green ratio indices, SR (R₅₅₃, R₅₃₇) and SR (R₅₄₅, R₅₃₈), and the three-band index (R₆₀₅-R₅₂₁-R₆₈₂)/(R₆₀₅+R₅₂₁+R₆₈₂) correlated well with the LNC. Only SR (R₅₅₃, R₅₃₇) was less influenced by VC/LAI and showed a stable performance in both the independent calibration and validation datasets. For the published indices tested in the present study, NDVIg-b and ND (R₅₀₃, R₄₈₃) showed a good predictive ability for the LNC. However, both of these indices and other published indices were found to be significantly dominated by the VC/LAI. CONCLUSION: SR (R₅₅₃, R₅₃₇) was the best index to reliably estimate the LNC in rice under various cultivation conditions, and is recommended for this use. However, other spectral indices need to be examined to determine if they influenced by factors such as VC/LAI. Such studies will improve the applicability of these indices to different types of rice cultivars and production systems.
Journal Article
Remotely Assessing Fraction of Photosynthetically Active Radiation (FPAR) for Wheat Canopies Based on Hyperspectral Vegetation Indexes
2018
Fraction of photosynthetically active radiation (FPAR), as an important index for evaluating yields and biomass production, is key to providing the guidance for crop management. However, the shortage of good hyperspectral data can frequently result in the hindrance of accurate and reliable FPAR assessment, especially for wheat. In the present research, aiming at developing a strategy for accurate FPAR assessment, the relationships between wheat canopy FPAR and vegetation indexes derived from concurrent ground-measured hyperspectral data were explored. FPAR revealed the most strongly correlation with normalized difference index (NDI), and scaled difference index (N
). Both NDI and N
revealed the increase as the increase of FPAR; however, NDI value presented the stagnation as FPAR value beyond 0.70. On the other hand, N
showed a decreasing tendency when FPAR value was higher than 0.70. This special relationship between FPAR and vegetation index could be employed to establish a piecewise FPAR assessment model with NDI as a regression variable during FPAR value lower than 0.70, or N
as the regression variable during FPAR value higher than 0.70. The model revealed higher assessment accuracy up to 16% when compared with FPAR assessment models based on a single vegetation index. In summary, it is feasible to apply NDI and N
for accomplishing wheat canopy FPAR assessment, and establish an FPAR assessment model to overcome the limitations from vegetation index saturation under the condition with high FPAR value.
Journal Article
In-Season Monitoring of Maize Leaf Water Content Using Ground-Based and UAV-Based Hyperspectral Data
2022
China is one the largest maize (Zea mays L.) producer worldwide. Considering water deficit as one of the most important limiting factors for crop yield stability, remote sensing technology has been successfully used to monitor water relations in the soil–plant–atmosphere system through canopy and leaf reflectance, contributing to the better management of water under precision agriculture practices and the quantification of dynamic traits. This research was aimed to evaluate the relation between maize leaf water content (LWC) and ground-based and unoccupied aerial vehicle (UAV)-based hyperspectral data using the following approaches: (I) single wavelengths, (II) broadband reflectance and vegetation indices, (III) optimum hyperspectral vegetation indices (HVIs), and (IV) partial least squares regression (PLSR). A field experiment was undertaken at the Chinese Academy of Agricultural Sciences, Beijing, China, during the 2020 cropping season following a split plot model in a randomized complete block design with three blocks. Three maize varieties were subjected to three differential irrigation schedules. Leaf-based reflectance (400–2500 nm) was measured with a FieldSpec 4 spectroradiometer, and canopy-based reflectance (400–1000 nm) was collected with a Pika-L hyperspectral camera mounted on a UAV at three assessment days. Both sensors demonstrated similar shapes in the spectral response from the leaves and canopy, with differences in reflectance intensity across near-infrared wavelengths. Ground-based hyperspectral data outperformed UAV-based data for LWC monitoring, especially when using the full spectra (Vis–NIR–SWIR). The HVI and the PLSR models were demonstrated to be more suitable for LWC monitoring, with a higher HVI accuracy. The optimal band combinations for HVI were centered between 628 and 824 nm (R2 from 0.28 to 0.49) using the UAV-based sensor and were consistently located around 1431–1464 nm and 2115–2331 nm (R2 from 0.59 to 0.80) using the ground-based sensor on the three assessment days. The obtained results indicate the potential for the complementary use of ground-based and UAV-based hyperspectral data for maize LWC monitoring.
Journal Article
Evaluating RGB Imaging and Multispectral Active and Hyperspectral Passive Sensing for Assessing Early Plant Vigor in Winter Wheat
by
Schmidhalter, Urs
,
Von Bloh, Malte
,
Prey, Lukas
in
Agricultural production
,
Agriculture - methods
,
Biomass
2018
Plant vigor is an important trait of field crops at early growth stages, influencing weed suppression, nutrient and water use efficiency and plant growth. High-throughput techniques for its evaluation are required and are promising for nutrient management in early growth stages and for detecting promising breeding material in plant phenotyping. However, spectral sensing for assessing early plant vigor in crops is limited by the strong soil background reflection. Digital imaging may provide a low-cost, easy-to-use alternative. Therefore, image segmentation for retrieving canopy cover was applied in a trial with three cultivars of winter wheat (Triticum aestivum L.) grown under two nitrogen regimes and in three sowing densities during four early plant growth stages (Zadok’s stages 14–32) in 2017. Imaging-based canopy cover was tested in correlation analysis for estimating dry weight, nitrogen uptake and nitrogen content. An active Greenseeker sensor and various established and newly developed vegetation indices and spectral unmixing from a passive hyperspectral spectrometer were used as alternative approaches and additionally tested for retrieving canopy cover. Before tillering (until Zadok’s stage 20), correlation coefficients for dry weight and nitrogen uptake with canopy cover strongly exceeded all other methods and remained on higher levels (R² > 0.60***) than from the Greenseeker measurements until tillering. From early tillering on, red edge based indices such as the NDRE and a newly extracted normalized difference index (736 nm; ~794 nm) were identified as best spectral methods for both traits whereas the Greenseeker and spectral unmixing correlated best with canopy cover. RGB-segmentation could be used as simple low-cost approach for very early growth stages until early tillering whereas the application of multispectral sensors should consider red edge bands for subsequent stages.
Journal Article
Evaluating Leaf Water Potential of Maize Through Multi-Cultivar Dehydration Experiments and Segmentation Thresholding
2025
Estimating leaf water potential (Ψleaf) is essential for understanding plant physiological processes’ response to drought. The estimation of Ψleaf based on different regression analysis methods with hyperspectral vegetation indices (VIs) has been proven to be a simple and efficient technique. However, models constructed by existing methods and VIs still face challenges regarding the generalizability and limited ranges of field experiment datasets. In this study, leaf dehydration experiments of three maize cultivars were applied to provide a dataset covering a wide range of Ψleaf variations, which is often challenging to obtain in field trials. The analysis screened published VIs highly correlated with Ψleaf and constructed a model for Ψleaf estimation based on three algorithms—partial least squares regression (PLSR), random forest (RF), and multiple linear stepwise regression (MLR)—for each cultivar and all three cultivars. Models were constructed using PLSR and MLR for each cultivar and PLSR, MLR, and RF for the samples from all three cultivars. The performance of the models developed for each cultivar was compared with the performance of the cross-cultivar model. Simultaneously, the normalized ratio (ND) and double-difference (DDn) were applied to determine the VIs and models. Finally, the relationship between the optimal VIs and Ψleaf was analyzed using discontinuous linear segmental fitting. The results showed that leaf spectral reflectance variations in the 350~700 nm bands and 1450~2500 nm bands were significantly sensitive to Ψleaf. The RF method achieved the highest prediction accuracy when all three cultivars’ data were used, with a normalized root mean square error (NRMSE) of 9.02%. In contrast, there was little difference in the predictive effectiveness of the models constructed for each cultivar and all three cultivars. Moreover, the simple linear regression model built based on the DDn(2030,45) outperformed the RF method regarding prediction accuracy, with an NRMSE of 7.94%. Ψleaf at the breakpoint obtained by discontinuous linear segment fitting was about −1.20 MPa, consistent with the published range of the turgor loss point (ΨTLP). This study provides an effective methodology for Ψleaf monitoring with significant practical value, particularly in irrigation decision-making and drought prediction.
Journal Article
Joint Retrieval of Winter Wheat Leaf Area Index and Canopy Chlorophyll Density Using Hyperspectral Vegetation Indices
2021
Leaf area index (LAI) and canopy chlorophyll density (CCD) are key biophysical and biochemical parameters utilized in winter wheat growth monitoring. In this study, we would like to exploit the advantages of three canonical types of spectral vegetation indices: indices sensitive to LAI, indices sensitive to chlorophyll content, and indices suitable for both parameters. In addition, two methods for joint retrieval were proposed. The first method is to develop integration-based indices incorporating LAI-sensitive and CCD-sensitive indices. The second method is to create a transformed triangular vegetation index (TTVI2) based on the spectral and physiological characteristics of the parameters. PROSAIL, as a typical radiative transfer model embedded with physical laws, was used to build estimation models between the indices and the relevant parameters. Validation was conducted against a field-measured hyperspectral dataset for four distinct growth stages and pooled data. The results indicate that: (1) the performance of the integrated indices from the first method are various because of the component indices; (2) TTVI2 is an excellent predictor for joint retrieval, with the highest R2 values of 0.76 and 0.59, the RMSE of 0.93 m2/m2 and 104.66 μg/cm2, and the RRMSE (Relative RMSE) of 12.76% and 16.96% for LAI and CCD, respectively.
Journal Article
Fluorescence and Hyperspectral Sensors for Nondestructive Analysis and Prediction of Biophysical Compounds in the Green and Purple Leaves of Tradescantia Plants
by
Chicati, Marcelo Luiz
,
Antunes, Werner Camargos
,
Nanni, Marcos Rafael
in
Accuracy
,
Artificial intelligence
,
chemometrics
2024
The application of non-imaging hyperspectral sensors has significantly enhanced the study of leaf optical properties across different plant species. In this study, chlorophyll fluorescence (ChlF) and hyperspectral non-imaging sensors using ultraviolet-visible-near-infrared shortwave infrared (UV-VIS-NIR-SWIR) bands were used to evaluate leaf biophysical parameters. For analyses, principal component analysis (PCA) and partial least squares regression (PLSR) were used to predict eight structural and ultrastructural (biophysical) traits in green and purple Tradescantia leaves. The main results demonstrate that specific hyperspectral vegetation indices (HVIs) markedly improve the precision of partial least squares regression (PLSR) models, enabling reliable and nondestructive evaluations of plant biophysical attributes. PCA revealed unique spectral signatures, with the first principal component accounting for more than 90% of the variation in sensor data. High predictive accuracy was achieved for variables such as the thickness of the adaxial and abaxial hypodermis layers (R2 = 0.94) and total leaf thickness, although challenges remain in predicting parameters such as the thickness of the parenchyma and granum layers within the thylakoid membrane. The effectiveness of integrating ChlF and hyperspectral technologies, along with spectroradiometers and fluorescence sensors, in advancing plant physiological research and improving optical spectroscopy for environmental monitoring and assessment. These methods offer a good strategy for promoting sustainability in future agricultural practices across a broad range of plant species, supporting cell biology and material analyses.
Journal Article
Experimental and Numerical Investigation of Dustfall Effect on Remote Sensing Retrieval Accuracy of Chlorophyll Content
2019
Chlorophyll is the dominant pigment in the photosynthetic light-harvesting complexes that is related to the physiological function of leaves and is responsible for light absorption and energy transfer. Dust pollution has become an environmental problem in many areas in China, indicating that accurately estimating chlorophyll content of vegetation using remote sensing for assessing the vegetation growth status in dusty areas is vital. However, dust deposited on the leaf may affect the chlorophyll content retrieval accuracy. Thus, quantitatively studying the dustfall effect is essential. Using selected vegetation indices (VIs), the medium resolution imaging spectrometer terrestrial chlorophyll index (MTCI), and the double difference index (DD), we studied the retrieval accuracy of chlorophyll content at the leaf scale under dusty environments based on a laboratory experiment and spectra simulation. First, the retrieval accuracy under different dustfall amounts was studied based on a laboratory experiment. Then, the relationship between dustfall amount and fractional dustfall cover (FDC) was experimentally analyzed for spectra simulation of dusty leaves. Based on spectral data simulated using a PROSPECT-based mixture model, the sensitivity of VIs to dust under different chlorophyll contents was analyzed comprehensively, and the MTCI was modified to reduce its sensitivity to dust. The results showed that (1) according to experimental investigation, the DD model provides low retrieval accuracy, the MTCI model is highly accurate when the dustfall amount is less than 80 g/m2, and the retrieval accuracy decreases significantly when the dustfall amount is more than 80 g/m2; (2) a logarithmic relationship exists between FDC and dustfall amount, and the PROSPECT-based mixture model can simulate the leaf spectra under different dustfall amounts and different chlorophyll contents with a root mean square error of 0.015; and (3) according to numerical investigation, MTCI’s sensitivity to dust in the chlorophyll content range of 25 to 60 μg/cm2 is lower than in other chlorophyll content ranges; DD’s sensitivity to dust was generally high throughout the whole chlorophyll content range. These findings may contribute to quantitatively understanding the dustfall effect on the retrieval of chlorophyll content and would help to accurately retrieve chlorophyll content in dusty areas using remote sensing.
Journal Article
Hyperspectral and Chlorophyll Fluorescence Analyses of Comparative Leaf Surfaces Reveal Cellular Influences on Leaf Optical Properties in Tradescantia Plants
by
Chicati, Marcelo Luiz
,
Antunes, Werner Camargos
,
Nanni, Marcos Rafael
in
Adaptation
,
Anthocyanin
,
Anthocyanins
2024
The differential effects of cellular and ultrastructural characteristics on the optical properties of adaxial and abaxial leaf surfaces in the genus Tradescantia highlight the intricate relationships between cellular arrangement and pigment distribution in the plant cells. We examined hyperspectral and chlorophyll a fluorescence (ChlF) kinetics using spectroradiometers and optical and electron microscopy techniques. The leaves were analysed for their spectral properties and cellular makeup. The biochemical compounds were measured and correlated with the biophysical and ultrastructural features. The main findings showed that the top and bottom leaf surfaces had different amounts and patterns of pigments, especially anthocyanins, flavonoids, total phenolics, chlorophyll-carotenoids, and cell and organelle structures, as revealed by the hyperspectral vegetation index (HVI). These differences were further elucidated by the correlation coefficients, which influence the optical signatures of the leaves. Additionally, ChlF kinetics varied between leaf surfaces, correlating with VIS-NIR-SWIR bands through distinct cellular structures and pigment concentrations in the hypodermis cells. We confirmed that the unique optical properties of each leaf surface arise not only from pigmentation but also from complex cellular arrangements and structural adaptations. Some of the factors that affect how leaves reflect light are the arrangement of chloroplasts, thylakoid membranes, vacuoles, and the relative size of the cells themselves. These findings improve our knowledge of the biophysical and biochemical reasons for leaf optical diversity, and indicate possible implications for photosynthetic efficiency and stress adaptation under different environmental conditions in the mesophyll cells of Tradescantia plants.
Journal Article