Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
142,263 result(s) for "image analysis"
Sort by:
An image J plugin for the high throughput image analysis of in vitro scratch wound healing assays
In vitro scratch wound healing assay, a simple and low-cost technique that works along with other image analysis tools, is one of the most widely used 2D methods to determine the cellular migration and proliferation in processes such as regeneration and disease. There are open-source programs such as imageJ to analyze images of in vitro scratch wound healing assays, but these tools require manual tuning of various parameters, which is time-consuming and limits image throughput. For that reason, we developed an optimized plugin for imageJ to automatically recognize the wound healing size, correct the average wound width by considering its inclination, and quantify other important parameters such as: area, wound area fraction, average wound width, and width deviation of the wound images obtained from a scratch/ wound healing assay. Our plugin is easy to install and can be used with different operating systems. It can be adapted to analyze both individual images and stacks. Additionally, it allows the analysis of images obtained from bright field, phase contrast, and fluorescence microscopes. In conclusion, this new imageJ plugin is a robust tool to automatically standardize and facilitate quantification of different in vitro wound parameters with high accuracy compared with other tools and manual identification.
Intelligent video surveillance systems : an algorithmic approach
This book will provide an overview of techniques for visual monitoring including video surveillance and human activity understanding. It will present the basic techniques of processing video from static cameras, starting with object detection and tracking. The author will introduce further video analytic modules including face detection, trajectory analysis and object classification. Examining system design and specific problems in visual surveillance, such as the use of multiple cameras and moving cameras, the author will elaborate on privacy issues focusing on approaches where automatic processing can help protect privacy-- Provided by publisher.
CellProfiler 4: improvements in speed, utility and usability
Background Imaging data contains a substantial amount of information which can be difficult to evaluate by eye. With the expansion of high throughput microscopy methodologies producing increasingly large datasets, automated and objective analysis of the resulting images is essential to effectively extract biological information from this data. CellProfiler is a free, open source image analysis program which enables researchers to generate modular pipelines with which to process microscopy images into interpretable measurements. Results Herein we describe CellProfiler 4, a new version of this software with expanded functionality. Based on user feedback, we have made several user interface refinements to improve the usability of the software. We introduced new modules to expand the capabilities of the software. We also evaluated performance and made targeted optimizations to reduce the time and cost associated with running common large-scale analysis pipelines. Conclusions CellProfiler 4 provides significantly improved performance in complex workflows compared to previous versions. This release will ensure that researchers will have continued access to CellProfiler’s powerful computational tools in the coming years.
Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress
This review explores how imaging techniques are being developed with a focus on deployment for crop monitoring methods. Imaging applications are discussed in relation to both field and glasshouse-based plants, and techniques are sectioned into ‘healthy and diseased plant classification’ with an emphasis on classification accuracy, early detection of stress, and disease severity. A central focus of the review is the use of hyperspectral imaging and how this is being utilised to find additional information about plant health, and the ability to predict onset of disease. A summary of techniques used to detect biotic and abiotic stress in plants is presented, including the level of accuracy associated with each method.
2-D and 3-D image registration
To master the fundamentals of image registration, there is no more comprehensive source than 2-D and 3-D Image Registration. In addition to delving into the relevant theories of image registration, the author presents their underlying algorithms. You'll also discover cutting-edge techniques to use in remote sensing, industrial, and medical applications. Examples of image registration are presented throughout, and the companion Web site contains all the images used in the book and provides links to software and algorithms discussed in the text, allowing you to reproduce the results in the text and develop images for your own research needs. 2-D and 3-D Image Registration serves as an excellent textbook for classes in image registration as well as an invaluable working resource.
Image processing and intelligent computing systems
\"There is a drastic growth in multimedia data. Even during the Covid-19 pandemic, we observed that the images helped doctors immensely in fast detection of Covid-19 infection in patients. There are many critical applications where images play a vital role. These applications use raw image data to extract some useful information about the world around us. Quick extraction of valuable information from raw images is one challenge that academicians and professionals face nowadays. This is where image processing comes into action. Image processing's primary purpose is to get an enhanced image or extract some useful information from it. Therefore, there is a major need for some technique or system that addresses this challenge. Intelligent Systems have emerged as a solution to address quick image information extraction. In simple words, an Intelligent System can be defined as a mathematical model that adapts itself to deal with the problems' dynamicity. These systems learn how to act so it can reach their objectives. Intelligent System helps accomplish various image processing functions like enhancement, segmentation, reconstruction, object detection, and morphing. The advent of Intelligent Systems in the image processing field has leveraged many critical applications for humankind. These critical applications include factory automation, biomedical imaging analysis, and decision-econometrics, Intelligent Systems and challenges\"-- Provided by publisher.
Medical Image Analysis using Convolutional Neural Networks: A Review
The science of solving clinical problems by analyzing images generated in clinical practice is known as medical image analysis. The aim is to extract information in an affective and efficient manner for improved clinical diagnosis. The recent advances in the field of biomedical engineering have made medical image analysis one of the top research and development area. One of the reasons for this advancement is the application of machine learning techniques for the analysis of medical images. Deep learning is successfully used as a tool for machine learning, where a neural network is capable of automatically learning features. This is in contrast to those methods where traditionally hand crafted features are used. The selection and calculation of these features is a challenging task. Among deep learning techniques, deep convolutional networks are actively used for the purpose of medical image analysis. This includes application areas such as segmentation, abnormality detection, disease classification, computer aided diagnosis and retrieval. In this study, a comprehensive review of the current state-of-the-art in medical image analysis using deep convolutional networks is presented. The challenges and potential of these techniques are also highlighted.