Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
5,621
result(s) for
"immune evasion"
Sort by:
SARS-CoV-2 evolution during treatment of chronic infection
2021
The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for virus infection through the engagement of the human ACE2 protein
1
and is a major antibody target. Here we show that chronic infection with SARS-CoV-2 leads to viral evolution and reduced sensitivity to neutralizing antibodies in an immunosuppressed individual treated with convalescent plasma, by generating whole-genome ultra-deep sequences for 23 time points that span 101 days and using in vitro techniques to characterize the mutations revealed by sequencing. There was little change in the overall structure of the viral population after two courses of remdesivir during the first 57 days. However, after convalescent plasma therapy, we observed large, dynamic shifts in the viral population, with the emergence of a dominant viral strain that contained a substitution (D796H) in the S2 subunit and a deletion (ΔH69/ΔV70) in the S1 N-terminal domain of the spike protein. As passively transferred serum antibodies diminished, viruses with the escape genotype were reduced in frequency, before returning during a final, unsuccessful course of convalescent plasma treatment. In vitro, the spike double mutant bearing both ΔH69/ΔV70 and D796H conferred modestly decreased sensitivity to convalescent plasma, while maintaining infectivity levels that were similar to the wild-type virus.The spike substitution mutant D796H appeared to be the main contributor to the decreased susceptibility to neutralizing antibodies, but this mutation resulted in an infectivity defect. The spike deletion mutant ΔH69/ΔV70 had a twofold higher level of infectivity than wild-type SARS-CoV-2, possibly compensating for the reduced infectivity of the D796H mutation. These data reveal strong selection on SARS-CoV-2 during convalescent plasma therapy, which is associated with the emergence of viral variants that show evidence of reduced susceptibility to neutralizing antibodies in immunosuppressed individuals.
Chronic infection with SARS-CoV-2 leads to the emergence of viral variants that show reduced susceptibility to neutralizing antibodies in an immunosuppressed individual treated with convalescent plasma.
Journal Article
The MYC oncogene — the grand orchestrator of cancer growth and immune evasion
by
Deutzmann Anja
,
Mahauad-Fernandez, Wadie D
,
Felsher, Dean W
in
Addictions
,
Cancer
,
Immune evasion
2022
The MYC proto-oncogenes encode a family of transcription factors that are among the most commonly activated oncoproteins in human neoplasias. Indeed, MYC aberrations or upregulation of MYC-related pathways by alternate mechanisms occur in the vast majority of cancers. MYC proteins are master regulators of cellular programmes. Thus, cancers with MYC activation elicit many of the hallmarks of cancer required for autonomous neoplastic growth. In preclinical models, MYC inactivation can result in sustained tumour regression, a phenomenon that has been attributed to oncogene addiction. Many therapeutic agents that directly target MYC are under development; however, to date, their clinical efficacy remains to be demonstrated. In the past few years, studies have demonstrated that MYC signalling can enable tumour cells to dysregulate their microenvironment and evade the host immune response. Herein, we discuss how MYC pathways not only dictate cancer cell pathophysiology but also suppress the host immune response against that cancer. We also propose that therapies targeting the MYC pathway will be key to reversing cancerous growth and restoring antitumour immune responses in patients with MYC-driven cancers.The MYC proto-oncogenes are among the most commonly activated proteins in human cancer, yet the clinical efficacy of MYC-targeted agents remains to be demonstrated. The authors of this Review describe how activation of the MYC pathway affects cancer cells as well as the tumour microenvironment and propose strategies for the therapeutic targeting of MYC-driven cancers.
Journal Article
Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion
by
Hammer, Christian
,
Jhunjhunwala Suchit
,
Delamarre Lélia
in
Antigen presentation
,
Antigen processing
,
Cancer
2021
Immune checkpoint blockade, which blocks inhibitory signals of T cell activation, has shown tremendous success in treating cancer, although success still remains limited to a fraction of patients. To date, clinically effective CD8+ T cell responses appear to target predominantly antigens derived from tumour-specific mutations that accumulate in cancer, also called neoantigens. Tumour antigens are displayed on the surface of cells by class I human leukocyte antigens (HLA-I). To elicit an effective antitumour response, antigen presentation has to be successful at two distinct events: first, cancer antigens have to be taken up by dendritic cells (DCs) and cross-presented for CD8+ T cell priming. Second, the antigens have to be directly presented by the tumour for recognition by primed CD8+ T cells and killing. Tumours exploit multiple escape mechanisms to evade immune recognition at both of these steps. Here, we review the tumour-derived factors modulating DC function, and we summarize evidence of immune evasion by means of quantitative modulation or qualitative alteration of the antigen repertoire presented on tumours. These mechanisms include modulation of antigen expression, HLA-I surface levels, alterations in the antigen processing and presentation machinery in tumour cells. Lastly, as complete abrogation of antigen presentation can lead to natural killer (NK) cell-mediated tumour killing, we also discuss how tumours can harbour antigen presentation defects and still evade NK cell recognition.Immune checkpoint inhibition does not benefit all patients. This Review discusses how antigen presentation, which is crucial for the success of this therapy, may be disrupted in tumours and dendritic cells of patients, and how tumours may further evade natural killer cell recognition.
Journal Article
Substantial Neutralization Escape by SARS-CoV-2 Omicron Variants BQ.1.1 and XBB.1
by
Surve, Nehalee
,
Mazurek, Camille R.
,
Patio, Robert C.
in
Antibodies
,
Antibodies, Neutralizing - genetics
,
Antibodies, Neutralizing - immunology
2023
BQ.1.1 and XBB.1 neutralizing antibody titers were lower than those against wild-type strain after boosters in vaccinated and previously infected persons. Both variants expressed the R346T spike mutation.
Journal Article
SARS-CoV-2 variants, spike mutations and immune escape
2021
Although most mutations in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome are expected to be either deleterious and swiftly purged or relatively neutral, a small proportion will affect functional properties and may alter infectivity, disease severity or interactions with host immunity. The emergence of SARS-CoV-2 in late 2019 was followed by a period of relative evolutionary stasis lasting about 11 months. Since late 2020, however, SARS-CoV-2 evolution has been characterized by the emergence of sets of mutations, in the context of ‘variants of concern’, that impact virus characteristics, including transmissibility and antigenicity, probably in response to the changing immune profile of the human population. There is emerging evidence of reduced neutralization of some SARS-CoV-2 variants by postvaccination serum; however, a greater understanding of correlates of protection is required to evaluate how this may impact vaccine effectiveness. Nonetheless, manufacturers are preparing platforms for a possible update of vaccine sequences, and it is crucial that surveillance of genetic and antigenic changes in the global virus population is done alongside experiments to elucidate the phenotypic impacts of mutations. In this Review, we summarize the literature on mutations of the SARS-CoV-2 spike protein, the primary antigen, focusing on their impacts on antigenicity and contextualizing them in the protein structure, and discuss them in the context of observed mutation frequencies in global sequence datasets.The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been characterized by the emergence of mutations and so-called variants of concern that impact virus characteristics, including transmissibility and antigenicity. In this Review, members of the COVID-19 Genomics UK (COG-UK) Consortium and colleagues summarize mutations of the SARS-CoV-2 spike protein, focusing on their impacts on antigenicity and contextualizing them in the protein structure, and discuss them in the context of observed mutation frequencies in global sequence datasets.
Journal Article
Considerable escape of SARS-CoV-2 Omicron to antibody neutralization
2022
The SARS-CoV-2 Omicron variant was first identified in November 2021 in Botswana and South Africa
1
–
3
. It has since spread to many countries and is expected to rapidly become dominant worldwide. The lineage is characterized by the presence of around 32 mutations in spike—located mostly in the N-terminal domain and the receptor-binding domain—that may enhance viral fitness and enable antibody evasion. Here we isolated an infectious Omicron virus in Belgium from a traveller returning from Egypt. We examined its sensitivity to nine monoclonal antibodies that have been clinically approved or are in development
4
, and to antibodies present in 115 serum samples from COVID-19 vaccine recipients or individuals who have recovered from COVID-19. Omicron was completely or partially resistant to neutralization by all monoclonal antibodies tested. Sera from recipients of the Pfizer or AstraZeneca vaccine, sampled five months after complete vaccination, barely inhibited Omicron. Sera from COVID-19-convalescent patients collected 6 or 12 months after symptoms displayed low or no neutralizing activity against Omicron. Administration of a booster Pfizer dose as well as vaccination of previously infected individuals generated an anti-Omicron neutralizing response, with titres 6-fold to 23-fold lower against Omicron compared with those against Delta. Thus, Omicron escapes most therapeutic monoclonal antibodies and, to a large extent, vaccine-elicited antibodies. However, Omicron is neutralized by antibodies generated by a booster vaccine dose.
An isolate of the Omicron variant of SARS-COV-2 was completely or partially resistant to neutralization by all nine clinically approved monoclonal antibodies tested.
Journal Article
Escape of SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma
2021
SARS-CoV-2 variants of concern (VOC) have arisen independently at multiple locations
1
,
2
and may reduce the efficacy of current vaccines that target the spike glycoprotein of SARS-CoV-2
3
. Here, using a live-virus neutralization assay, we compared the neutralization of a non-VOC variant with the 501Y.V2 VOC (also known as B.1.351) using plasma collected from adults who were hospitalized with COVID-19 during the two waves of infection in South Africa, the second wave of which was dominated by infections with the 501Y.V2 variant. Sequencing demonstrated that infections of plasma donors from the first wave were with viruses that did not contain the mutations associated with 501Y.V2, except for one infection that contained the E484K substitution in the receptor-binding domain. The 501Y.V2 virus variant was effectively neutralized by plasma from individuals who were infected during the second wave. The first-wave virus variant was effectively neutralized by plasma from first-wave infections. However, the 501Y.V2 variant was poorly cross-neutralized by plasma from individuals with first-wave infections; the efficacy was reduced by 15.1-fold relative to neutralization of 501Y.V2 by plasma from individuals infected in the second wave. By contrast, cross-neutralization of first-wave virus variants using plasma from individuals with second-wave infections was more effective, showing only a 2.3-fold decrease relative to neutralization of first-wave virus variants by plasma from individuals infected in the first wave. Although we tested only one plasma sample from an individual infected with a SARS-CoV-2 variant with only the E484K substitution, this plasma sample potently neutralized both variants. The observed effective neutralization of first-wave virus by plasma from individuals infected with 501Y.V2 provides preliminary evidence that vaccines based on VOC sequences could retain activity against other circulating SARS-CoV-2 lineages.
Cross-neutralization assays of early variants and the 501Y.V2 variant of SARS-CoV-2 show that plasma from individuals infected with 501Y.V2 effectively neutralizes all variants, indicating that a vaccine that targets 501Y.V2 may also be effective against other SARS-CoV-2 variants.
Journal Article
Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7
2021
The COVID-19 pandemic has had widespread effects across the globe, and its causative agent, SARS-CoV-2, continues to spread. Effective interventions need to be developed to end this pandemic. Single and combination therapies with monoclonal antibodies have received emergency use authorization
1
–
3
, and more treatments are under development
4
–
7
. Furthermore, multiple vaccine constructs have shown promise
8
, including two that have an approximately 95% protective efficacy against COVID-19
9
,
10
. However, these interventions were directed against the initial SARS-CoV-2 virus that emerged in 2019. The recent detection of SARS-CoV-2 variants B.1.1.7 in the UK
11
and B.1.351 in South Africa
12
is of concern because of their purported ease of transmission and extensive mutations in the spike protein. Here we show that B.1.1.7 is refractory to neutralization by most monoclonal antibodies against the N-terminal domain of the spike protein and is relatively resistant to a few monoclonal antibodies against the receptor-binding domain. It is not more resistant to plasma from individuals who have recovered from COVID-19 or sera from individuals who have been vaccinated against SARS-CoV-2. The B.1.351 variant is not only refractory to neutralization by most monoclonal antibodies against the N-terminal domain but also by multiple individual monoclonal antibodies against the receptor-binding motif of the receptor-binding domain, which is mostly due to a mutation causing an E484K substitution. Moreover, compared to wild-type SARS-CoV-2, B.1.351 is markedly more resistant to neutralization by convalescent plasma (9.4-fold) and sera from individuals who have been vaccinated (10.3–12.4-fold). B.1.351 and emergent variants
13
,
14
with similar mutations in the spike protein present new challenges for monoclonal antibody therapies and threaten the protective efficacy of current vaccines.
The SARS-CoV-2 variant B.1.1.7 can be neutralized by convalescent sera or sera from vaccinated individuals, whereas the B.1.351 variant is resistant to neutralization by these sera and by several monoclonal antibodies that are in clinical use.
Journal Article
Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies
by
Snell, Gyorgy
,
Lanzavecchia, Antonio
,
Ceron-Gutierrez, Lourdes
in
13/106
,
631/250/590
,
631/326/596
2021
Transmission of SARS-CoV-2 is uncontrolled in many parts of the world; control is compounded in some areas by the higher transmission potential of the B.1.1.7 variant
1
, which has now been reported in 94 countries. It is unclear whether the response of the virus to vaccines against SARS-CoV-2 on the basis of the prototypic strain will be affected by the mutations found in B.1.1.7. Here we assess the immune responses of individuals after vaccination with the mRNA-based vaccine BNT162b2
2
. We measured neutralizing antibody responses after the first and second immunizations using pseudoviruses that expressed the wild-type spike protein or a mutated spike protein that contained the eight amino acid changes found in the B.1.1.7 variant. The sera from individuals who received the vaccine exhibited a broad range of neutralizing titres against the wild-type pseudoviruses that were modestly reduced against the B.1.1.7 variant. This reduction was also evident in sera from some patients who had recovered from COVID-19. Decreased neutralization of the B.1.1.7 variant was also observed for monoclonal antibodies that target the N-terminal domain (9 out of 10) and the receptor-binding motif (5 out of 31), but not for monoclonal antibodies that recognize the receptor-binding domain that bind outside the receptor-binding motif. Introduction of the mutation that encodes the E484K substitution in the B.1.1.7 background to reflect a newly emerged variant of concern (VOC 202102/02) led to a more-substantial loss of neutralizing activity by vaccine-elicited antibodies and monoclonal antibodies (19 out of 31) compared with the loss of neutralizing activity conferred by the mutations in B.1.1.7 alone. The emergence of the E484K substitution in a B.1.1.7 background represents a threat to the efficacy of the BNT162b2 vaccine.
Sera from vaccinated individuals and some monoclonal antibodies show a modest reduction in neutralizing activity against the B.1.1.7 variant of SARS-CoV-2; but the E484K substitution leads to a considerable loss of neutralizing activity.
Journal Article
Learning from prepandemic data to forecast viral escape
by
Rollins, Nathan J.
,
Sander, Chris
,
Thadani, Nicole N.
in
631/114/2397
,
631/250/2161
,
Antibodies
2023
Effective pandemic preparedness relies on anticipating viral mutations that are able to evade host immune responses to facilitate vaccine and therapeutic design. However, current strategies for viral evolution prediction are not available early in a pandemic—experimental approaches require host polyclonal antibodies to test against
1
–
16
, and existing computational methods draw heavily from current strain prevalence to make reliable predictions of variants of concern
17
–
19
. To address this, we developed EVEscape, a generalizable modular framework that combines fitness predictions from a deep learning model of historical sequences with biophysical and structural information. EVEscape quantifies the viral escape potential of mutations at scale and has the advantage of being applicable before surveillance sequencing, experimental scans or three-dimensional structures of antibody complexes are available. We demonstrate that EVEscape, trained on sequences available before 2020, is as accurate as high-throughput experimental scans at anticipating pandemic variation for SARS-CoV-2 and is generalizable to other viruses including influenza, HIV and understudied viruses with pandemic potential such as Lassa and Nipah. We provide continually revised escape scores for all current strains of SARS-CoV-2 and predict probable further mutations to forecast emerging strains as a tool for continuing vaccine development (
evescape.org
).
EVEscape, a flexible framework using deep learning and biophysical structural information, enables early identification of concerning mutations in viruses with pandemic potential, facilitating the development of vaccines and therapeutics.
Journal Article