Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1,169 result(s) for "impeller design"
Sort by:
Blood Pump Design Variations and Their Influence on Hydraulic Performance and Indicators of Hemocompatibility
Patients with ventricular assist devices still suffer from high rates of adverse events. Since many of these complications are linked to the flow field within the pump, optimization of the device geometry is essential. To investigate design aspects that influence the flow field, we developed a centrifugal blood pump using industrial guidelines. We then systematically varied selected design parameters and investigated their effects on hemodynamics and hydraulic performance using computational fluid dynamics. We analysed the flow fields based on Eulerian and Lagrangian features, shear stress histograms and six indicators of hemocompatibility. Within the investigated range of clearance gaps (50–500 µm), number of impeller blades (4–7), and semi-open versus closed shroud design, we found association of potentially damaging shear stress conditions with larger gap size and more blades. The extent of stagnation and recirculation zones was reduced with lower numbers of blades and a semi-open impeller, but it was increased with smaller clearance. The Lagrangian hemolysis index, a metric commonly applied to estimate blood damage, showed a negative correlation with hydraulic efficiency and no correlation with the Eulerian threshold-based metric.
A Rapid Design Method for Centrifugal Pump Impellers Based on Machine Learning
Centrifugal pumps are widely used across various industries, and the design of high-efficiency centrifugal pumps is essential for energy savings and emission reductions. The development of centrifugal pump models primarily uses an iterative design approach combining direct and inverse problem-solving based on one-dimensional flow theory. However, this semi-empirical, semi-theoretical design process is time-consuming and costly. To reduce development time and costs, this paper proposes a rapid impeller design method focused on hydraulic performance, integrating traditional similarity design theory with machine learning. The proposed model uses neural networks to predict empirical coefficients, determine key dimensions such as the impeller’s inlet diameter, outlet diameter, outlet width, and axial distance. Once these parameters are defined, the main dimensions of the impeller can be calculated. The blade profile is defined using a 5-point B´ezier curve. Variations in the cross-sectional area of the flow passage influence the internal flow state of the centrifugal pump, ultimately impacting its hydraulic efficiency. A genetic algorithm, guided by variations in the cross-sectional area of the flow passage, optimizes the blade profile, achieving an improved impeller flow path and completing the rapid design of the centrifuge. This method significantly shortens the development cycle and lowers design costs, making it a promising technique for future impeller designs.
CFD simulation of the laboratory-scale anaerobic digester to study the impacts of impeller geometric and operational parameters on its performance
This study numerically surveys the effects of several main parameters of an agitated anaerobic digester on mixing rate and power input. Numerical simulation is conducted employing the Finite Volume Method (FY M), and it is validated with available experimental data. The results indicate that doubling the blade length enhances the mixing rate and the power input by 39.9% and 13.5 times, respectively; increasing the number of blades (from 4 to 6) improves 1 lie mixing rate by 12.5% and makes the power input grow 1.4 times: and decreasing the blade tilt angle from 45° to 30° causes the mixing rate to drop by 14% and decreases the power input 1.8 times. Furthermore, the observations show that the mixing rate and power input are adversely influenced by the wastewater concentration. At last, the most effective impeller design, among 144 cases investigated, is found and suggested.
A Study of the Mixing Performance of Different Impeller Designs in Stirred Vessels Using Computational Fluid Dynamics
Design and operation of mixing systems using agitated vessels is a difficult task due to the challenge of obtaining accurate information on impeller-induced turbulence. The use of Computational Fluid Dynamics (CFD) can provide detailed understanding of such systems. In this study, experimental tests and computational fluid dynamics simulations were performed to examine the flow characteristics of four impeller designs (anchor, saw-tooth, counter-flow and Rushton turbine), in achieving solution homogeneity. The impellers were used to mix potassium sulfate granules, from which values of electrical conductivity of the solution were measured and used to estimate the distribution pattern of dissolved solid concentrations within the vessel. CFD models were developed for similar mixing arrangement using commercial software, ANSYS Fluent 18.1 solver and the standard k-epsilon (ε) turbulence model. The Multiple Reference Frame (MRF) approach was used to simulate the impeller rotation. Velocity profiles generated from the simulations were in good agreement with the experimental predictions, as well as with results from previous studies. It was concluded that, through CFD analysis, detailed information can be obtained for optimal design of mixing apparatus. These findings are relevant in choosing the best mixing equipment and provides a basis for scaling up mixing operations in larger systems.
Investigation of the Performance of a Centrifugal Pump Impeller Design with the Addition of a Junction Disc Plate
This research analyzes the impeller design performance that has been modified based on previous impeller designs. The previous impeller design used high engine power consumption due to the total head, so the modification of the impeller design is expected to reduce the engine power consumption. The existing design and the modified impeller design with the addition of the junction disc plate are used by this research. This research used experiment methods and theoretical methods to compare both of impeller design performances. The experiment method measures total head, fluid capacity, engine speed, and engine power consumption. The theoretical method analyzes actual fluid velocity, specific velocity, total suction head, NPSH, and pump efficiency. The results showed that the fluid flow rate was able to increase the efficiency of the centrifugal pump by 2.8%. The conclusion explains that the addition of a junction disc plate produces energy from a steady fluid flow rate to reduce the engine power consumption and escalation of pump efficiency.
Optimized Foil-Based Impeller Design for Enhanced Power Recovery in Pump-as-Turbine Applications
A pump operating as a turbine (PAT) is a type of hydraulic machine capable of functioning both as a pump and as a turbine by reversing the flow direction. The pump-as-turbine (PAT) approach presents an effective method of hydropower generation, particularly suitable for addressing the increasing global energy demands in rural and remote areas. In addition to its adaptability, PAT-based micro-hydropower systems typically incur lower operating costs than conventional hydrodynamic turbines, despite requiring higher initial investment. Recent research has focused on integrating PATs into pipe distribution systems to harness untapped hydraulic energy. This study presents the development and performance evaluation of a novel pump operating as a turbine (PAT) impeller, designed to enhance hydropower recovery in water distribution systems. A three-dimensional (3D) impeller model was created using Catia software, integrating airfoil (hydrofoil) geometries into the blade profile to improve the efficiency of power extraction during turbine operation. Unlike conventional designs, the new impeller configuration generates additional force components aligned with the rotor’s direction of rotation, thereby increasing the moment about the axis and enhancing angular velocity. Computational fluid dynamics (CFD) simulations performed in ANSYS Fluent confirmed that the redesigned PAT significantly improves both performance and efficiency, demonstrating superior power recovery compared to the original design. The results highlight the potential of integrating PAT systems with optimized blade geometries into water distribution networks, offering a viable solution for energy recovery and head reduction during periods of low demand.
Effect of the Mixer Design Parameters on the Performance of a Twin Paddle Blender: A DEM Study
The design parameters of a mixing system have a major impact on the quality of the final product. Therefore, identifying the optimum parameters of mixing systems is highly relevant to various industrial processes dealing with particulate flows. However, the studies on the influences of the mixer’s design features are still insufficient. In this study, the Discrete Element Method (DEM) is used to examine the impact of paddle angle, width, and gap on the mixing performance of a twin paddle blender. The mixing performance and particle flow are assessed using the relative standard deviation (RSD) mixing index, velocity field, diffusivity coefficient, granular temperature, the force acting on particles, and the mixer’s power consumption. The mixing performance is highest for a paddle angle of 0° at the cost of the highest forces acting on particles. The paddle width is indicated as a critical factor for achieving better mixing quality. In contrast, the powder mixing efficiency and the mixer’s power consumption are not significantly affected by the paddle gap. The results regarding the power consumption denote that the mixer using the paddle angle of 60° has the minimum power consumption. Moreover, increasing the paddle width results in the enhancement of the mixer’s power consumption.
Optimization of the Operating and Design Conditions to Reduce the Power Consumption in a Vessel Stirred by a Paddle Impeller
Design of the impeller blade is a determining factor in power consumption and mixing quality, which determines consequently the cost of the mixing operation. This study explores the flow patterns and the power required for stirring a Newtonian fluid by paddle impellers. Investigations are carried out via three dimensional (3D) numerical simulations. Effects of the blade curvature, blade diameter, blade number and Reynolds number are analyzed. The curved blade is found to be more efficient to reduce the power consumption, compared with the straight blade. A new correlation is proposed for predicting the power required with two-curved-bladed impellers. The straight and very large blade creates a dead zone in the space between the blade tip and the vertical wall of vessel. This issue may be overcome by the curved blade, which increases consequently the well-mixed region size. A wider well-mixed region may be obtained with the larger curved blade, but with an additional energy cost.
Kinetics and Optimization of Lipophilic Kojic Acid Derivative Synthesis in Polar Aprotic Solvent Using Lipozyme RMIM and Its Rheological Study
The synthesis of kojic acid derivative (KAD) from kojic and palmitic acid (C16:0) in the presence of immobilized lipase from Rhizomucor miehei (commercially known as Lipozyme RMIM), was studied using a shake flask system. Kojic acid is a polyfunctional heterocycles that acts as a source of nucleophile in this reaction allowing the formation of a lipophilic KAD. In this study, the source of biocatalyst, Lipozyme RMIM, was derived from the lipase of Rhizomucor miehei immobilized on weak anion exchange macro-porous Duolite ES 562 by the adsorption technique. The effects of solvents, enzyme loading, reaction temperature, and substrate molar ratio on the reaction rate were investigated. In one-factor-at-a-time (OFAT) experiments, a high reaction rate (30.6 × 10−3 M·min−1) of KAD synthesis was recorded using acetone, enzyme loading of 1.25% (w/v), reaction time of 12 h, temperature of 50 °C and substrate molar ratio of 5:1. Thereafter, a yield of KAD synthesis was optimized via the response surface methodology (RSM) whereby the optimized molar ratio (fatty acid: kojic acid), enzyme loading, reaction temperature and reaction time were 6.74, 1.97% (w/v), 45.9 °C, and 20 h respectively, giving a high yield of KAD (64.47%). This condition was reevaluated in a 0.5 L stirred tank reactor (STR) where the agitation effects of two impellers; Rushton turbine (RT) and pitch-blade turbine (PBT), were investigated. In the STR, a very high yield of KAD synthesis (84.12%) was achieved using RT at 250 rpm, which was higher than the shake flask, thus indicating better mixing quality in STR. In a rheological study, a pseudoplastic behavior of KAD mixture was proposed for potential application in lotion formulation.
Synthesis of zeolites Na-P1 from South African coal fly ash: effect of impeller design and agitation
South African fly ash has been shown to be a useful feedstock for the synthesis of some zeolites. The present study focuses on the effect of impeller design and agitation rates on the synthesis of zeolite Na-P1 which are critical to the commercialization of this product. The effects of three impeller designs (4-flat blade, Anchor and Archimedes screw impellers) and three agitation speeds (150, 200 and 300 rpm) were investigated using a modified previously reported synthesis conditions; 48 hours of ageing at 47 °C and static hydrothermal treatment at 140 °C for 48 hours. The experimental results demonstrated that the phase purity of zeolite Na-P1 was strongly affected by the agitation rate and the type of impeller used during the ageing step of the synthesis process. Although zeolite Na-P1 was synthesized with a space time yield (STY) of 15 ± 0.4 kg d−1m−3and a product yield of 0.98±0.05 g zeolites/g fly ash for each impeller at different agitation speeds, zeolite formation was assessed to be fairly unsuccessful in some cases due the occurrence of undissolved mullite and/or the formation of impurities such as hydroxysodalite with the zeolitic product. This study also showed that a high crystalline zeolite Na-P1 can be synthesized from South African coal fly ash using a 4-flat blade impeller at an agitation rate of 200 rpm during the ageing step at 47 °C for 48 hours followed by static hydrothermal treatment at 140 °C for 48 hours.