Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
427
result(s) for
"impervious surface"
Sort by:
Spatial Analysis of Surface Urban Heat Islands in Four Rapidly Growing African Cities
by
Estoque, Ronald
,
Simwanda, Matamyo
,
Murayama, Yuji
in
African cities
,
Central business districts
,
Cities
2019
Africa’s unprecedented, uncontrolled and unplanned urbanization has put many African cities under constant ecological and environmental threat. One of the critical ecological impacts of urbanization likely to adversely affect Africa’s urban dwellers is the urban heat island (UHI) effect. However, UHI studies in African cities remain uncommon. Therefore, this study attempts to examine the relationship between land surface temperature (LST) and the spatial patterns, composition and configuration of impervious surfaces/green spaces in four African cities, Lagos (Nigeria), Nairobi (Kenya), Addis Ababa (Ethiopia) and Lusaka (Zambia). Landsat OLI/TIRS data and various geospatial approaches, including urban–rural gradient, urban heat island intensity, statistics and urban landscape metrics-based techniques, were used to facilitate the analysis. The results show significantly strong correlation between mean LST and the density of impervious surface (positive) and green space (negative) along the urban–rural gradients of the four African cities. The study also found high urban heat island intensities in the urban zones close (0 to 10 km) to the city center for all cities. Generally, cities with a higher percentage of the impervious surface were warmer by 3–4 °C and vice visa. This highlights the crucial mitigating effect of green spaces. We also found significant correlations between the mean LST and urban landscape metrics (patch density, size, shape, complexity and aggregation) of impervious surfaces (positive) and green spaces (negative). The study revealed that, although most African cities have relatively larger green space to impervious surface ratio with most green spaces located beyond the urban footprint, the UHI effect is still evident. We recommend that urban planners and policy makers should consider mitigating the UHI effect by restoring the urban ecosystems in the remaining open spaces in the urban area and further incorporate strategic combinations of impervious surfaces and green spaces in future urban and landscape planning.
Journal Article
An automatic, rapid and continuous impervious surface mapping framework based on historical land cover datasets
by
Zhang, Liangpei
,
Sun, Lingyu
,
Wu, Chen
in
impervious surface expansion
,
impervious surface mapping
,
Rapid mapping and updating
2026
Long time series impervious surface mapping (ISM) is important for understanding urban expansion, environmental impacts, and urban planning. There are some historical global ISM products, such as GAIA and NUACI datasets, whereas they may not meet the user’s diverse application needs in the aspects of mapping timeliness, temporal resolution, and spatial resolution. Therefore, this study proposes an automatic, rapid, and continuous impervious surface mapping and updating framework based on historical land cover datasets without using other labeled data, to improve the updating speed and spatio-temporal resolution of impervious surface maps. The main process is divided into three steps: (1) Multi-temporal samples for classification were obtained by using GAIA dataset, FROM-GLC dataset and the unsupervised continuous change detection (CCD) algorithm; (2) Quarterly long time series ISM results (ISMs) were obtained by using multi-temporal samples and quarterly features; (3) The final results were obtained by using the post-processing operations in the obtained quarterly long time series ISMs to improve the mapping accuracy. The proposed framework is applied to eight cities around the world, and the total overall accuracy (OA) and Kappa of long time series ISMs with post-processing in the eight cities are 92.64% and 0.8525, respectively, improving the OA and Kappa of those without post-processing by 1.41% and 0.0281, respectively, and those of GAIA dataset by 4.57% and 0.0914, respectively, which proved the effectiveness of the proposed method. This study also analyzed the spatial patterns of impervious surface expansion in eight cities and identified different spatial patterns of expansion that existed among the cities, while capturing the abrupt change in the spatial patterns of expansion in Rosario and Novosibirsk after the second quarter of 2021. The proposed framework achieved rapid mapping and updating of impervious surface without any labeled samples, and has the potential to map the global impervious surface continuously.
Journal Article
A Novel Index for Impervious Surface Area Mapping: Development and Validation
by
Zheng, Kun
,
Chen, Hui
,
Tian, Yugang
in
impervious surface area extraction
,
perpendicular impervious surface index (PISI)
,
urban area
2018
The distribution and dynamic changes in impervious surface areas (ISAs) are crucial to understanding urbanization and its impact on urban heat islands, earth surface energy balance, hydrological cycles, and biodiversity. Remotely sensed data play an essential role in ISA mapping, and numerous methods have been developed and successfully applied for ISA extraction. However, the heterogeneity of ISA spectra and the high similarity of the spectra between ISA and soil have not been effectively addressed. In this study, we selected data from the US Geological Survey (USGS) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) spectral libraries as samples and used blue and near-infrared bands as characteristic bands based on spectral analysis to propose a novel index, the perpendicular impervious surface index (PISI). Landsat 8 operational land imager data in four provincial capital cities of China (Wuhan, Shenyang, Guangzhou, and Xining) were selected as test data to examine the performance of the proposed PISI in four different environments. Threshold analysis results show that there is a significant positive correlation between PISI and the proportion of ISA, and threshold can be adjusted according to different needs with different accuracy. Furthermore, comparative analyses, which involved separability analysis and extraction precision analysis, were conducted among PISI, biophysical composition index (BCI), and normalized difference built-up index (NDBI). Results indicate that PISI is more accurate and has better separability for ISA and soil as well as ISA and vegetation in the ISA extraction than the BCI and NDBI under different conditions. The accuracy of PISI in the four cities is 94.13%, 96.50%, 89.51%, and 93.46% respectively, while BCI and NDBI showed accuracy of 77.53%, 93.49%, 78.02%, and 84.03% and 58.25%, 57.53%, 77.77%, and 64.83%, respectively. In general, the proposed PISI is a convenient index to extract ISA with higher accuracy and better separability for ISA and soil as well as ISA and vegetation. Meanwhile, as PISI only uses blue and near-infrared bands, it can be used in a wider variety of remote sensing images.
Journal Article
A Modified Normalized Difference Impervious Surface Index (MNDISI) for Automatic Urban Mapping from Landsat Imagery
by
Shang, Ranran
,
Sun, Zhongchang
,
Guo, Huadong
in
automatic threshold selection
,
Automation
,
built-up indices
2017
Impervious surface area (ISA) is a key factor for monitoring urban environment and land development. Automatic mapping of impervious surfaces has attracted growing attention in recent years. Spectral built-up indices are considered promising to map ISA distributions due to their easy, parameter-free implementations. This study explores the potentials of impervious surface indices for ISA mapping from Landsat imagery using a case study area in Boston, USA. A modified normalized difference impervious surface index (MNDISI) is proposed, and a Gaussian-based automatic threshold selection method is used to identify the optimal MNDISI threshold for delineating impervious surfaces from background features. To evaluate its effectiveness, comparison analysis is conducted between MNDISI and the original NDISI using Landsat images from three sensors (TM/ETM+/OLI-TIRS) acquired in four seasons. Our results suggest that built-up indices are sensitive to image seasonality, and summer is the best time phase for ISA mapping. With reduced uncertainties from automatic threshold selection, the MNDISI extracts impervious surfaces from all Landsat images in summer with an overall accuracy higher than 87% and an overall Kappa coefficient higher than 0.74. The proposed method is superior to previous index-based ISA mapping from the enhanced thermal integration and automatic threshold selection. The ISA maps from the TM, ETM+ and OLI-TIRS images are not significantly different. With enlarged data pool when all Landsat sensors are considered and automation of threshold selection proposed in this study, the MNDISI could be an effective built-up index for rapid and automatic ISA mapping at regional and global scales.
Journal Article
Urban Heat Island Formation in Greater Cairo: Spatio-Temporal Analysis of Daytime and Nighttime Land Surface Temperatures along the Urban–Rural Gradient
2021
An urban heat island (UHI) is a significant anthropogenic modification of urban land surfaces, and its geospatial pattern can increase the intensity of the heatwave effects. The complex mechanisms and interactivity of the land surface temperature in urban areas are still being examined. The urban–rural gradient analysis serves as a unique natural opportunity to identify and mitigate ecological worsening. Using Landsat Thematic Mapper (TM), Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS) and Moderate Resolution Imaging Spectroradiometer (MODIS), Land Surface Temperature (LST) data in 2000, 2010, and 2019, we examined the spatial difference in daytime and nighttime LST trends along the urban–rural gradient in Greater Cairo, Egypt. Google Earth Engine (GEE) and machine learning techniques were employed to conduct the spatio-temporal analysis. The analysis results revealed that impervious surfaces (ISs) increased significantly from 564.14 km2 in 2000 to 869.35 km2 in 2019 in Greater Cairo. The size, aggregation, and complexity of patches of ISs, green space (GS), and bare land (BL) showed a strong correlation with the mean LST. The average urban–rural difference in mean LST was −3.59 °C in the daytime and 2.33 °C in the nighttime. In the daytime, Greater Cairo displayed the cool island effect, but in the nighttime, it showed the urban heat island effect. We estimated that dynamic human activities based on the urban structure are causing the spatial difference in the LST distribution between the day and night. The urban–rural gradient analysis indicated that this phenomenon became stronger from 2000 to 2019. Considering the drastic changes in the spatial patterns and the density of IS, GS, and BL, urban planners are urged to take immediate steps to mitigate increasing surface UHI; otherwise, urban dwellers might suffer from the severe effects of heatwaves.
Journal Article
Assessing Surface Urban Heat Island Related to Land Use/Land Cover Composition and Pattern in the Temperate Mountain Valley City of Kathmandu, Nepal
by
Athukorala, Darshana
,
Karunaratne, Siri
,
Morimoto, Takehiro
in
Accuracy
,
Air pollution
,
Cities
2022
Rapid urban growth has coincided with a substantial change in the environment, including vegetation, soil, and urban climate. The surface urban heat island (UHI) is the temperature in the lowest layers of the urban atmosphere; it is critical to the surface’s energy balance and makes it possible to determine internal climates that affect the livability of urban residents. Therefore, the surface UHI is recognized as one of the crucial global issues in the 21st century. This phenomenon affects sustainable urban planning, the health of urban residents, and the possibility of living in cities. In the context of sustainable landscapes and urban planning, more weight is given to exploring solutions for mitigating and adapting to the surface UHI effect, currently a hot topic in urban thermal environments. This study evaluated the relationship between land use/land cover (LULC) and land surface temperature (LST) formation in the temperate mountain valley city of Kathmandu, Nepal, because it is one of the megacities of South Asia, and the recent population increase has led to the rapid urbanization in the valley. Using Landsat images for 2000, 2013, and 2020, this study employed several approaches, including machine learning techniques, remote sensing (RS)-based parameter analysis, urban-rural gradient analysis, and spatial composition and pattern analysis to explore the surface UHI effect from the urban expansion and green space in the study area. The results revealed that Kathmandu’s surface UHI effect was remarkable. In 2000, the higher mean LST tended to be in the city’s core area, whereas the mean LST tended to move in the east, south, north, and west directions by 2020, which is compatible with urban expansion. Urban periphery expansion showed a continuous enlargement, and the urban core area showed a predominance of impervious surface (IS) on the basis of urban-rural gradient analysis. The city core had a lower density of green space (GS), while away from the city center, a higher density of GS predominated at the three time points, showing a lower surface UHI effect in the periphery compared to the city core area. This study reveals that landscape composition and pattern are significantly correlated with the mean LST in Kathmandu. Therefore, in discussing these findings in order to mitigate and adapt to prominent surface UHI effects, this study provides valuable information for sustainable urban planning and landscape design in mountain valley cities like Kathmandu.
Journal Article
Mapping Impervious Surface Distribution with Integration of SNNP VIIRS-DNB and MODIS NDVI Data
2015
Data from the U.S. Defense Meteorological Satellite Program’s Operational Line-scan System are often used to map impervious surface area (ISA) distribution at regional and global scales, but its coarse spatial resolution and data saturation produce high inaccuracy in ISA estimation. Suomi National Polar-orbiting Partnership (SNPP) Visible Infrared Imaging Radiometer Suite’s Day/Night Band (VIIRS-DNB) with its high spatial resolution and dynamic data range may provide new insights but has not been fully examined in mapping ISA distribution. In this paper, a new variable—Large-scale Impervious Surface Index (LISI)—is proposed to integrate VIIRS-DNB and Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) data for mapping ISA distribution. A regression model was established, in which LISI was used as an independent variable and the reference ISA from Landsat images was a dependent variable. The results indicated a better estimation performance using LISI than using a single VIIRS-DNB or MODIS NDVI variable. The LISI-based approach provides accurate spatial patterns from high values in core urban areas to low values in rural areas, with an overall root mean squared error of 0.11. The LISI-based approach is recommended for fractional ISA estimation in a large area.
Journal Article
Heat and Humidity in the City: Neighborhood Heat Index Variability in a Mid-Sized City in the Southeastern United States
by
Jon Hathaway
,
Lisa Reyes Mason
,
David Howe
in
Cities
,
Cities - statistics & numerical data
,
Heat
2016
Daily weather conditions for an entire city are usually represented by a single weather station, often located at a nearby airport. This resolution of atmospheric data fails to recognize the microscale climatic variability associated with land use decisions across and within urban neighborhoods. This study uses heat index, a measure of the combined effects of temperature and humidity, to assess the variability of heat exposure from ten weather stations across four urban neighborhoods and two control locations (downtown and in a nearby nature center) in Knoxville, Tennessee, USA. Results suggest that trees may negate a portion of excess urban heat, but are also associated with greater humidity. As a result, the heat index of locations with more trees is significantly higher than downtown and areas with fewer trees. Trees may also reduce heat stress by shading individuals from incoming radiation, though this is not considered in this study. Greater amounts of impervious surfaces correspond with reduced evapotranspiration and greater runoff, in terms of overall mass balance, leading to a higher temperature, but lower relative humidity. Heat index and relative humidity were found to significantly vary between locations with different tree cover and neighborhood characteristics for the full study time period as well as for the top 10% of heat index days. This work demonstrates the need for high-resolution climate data and the use of additional measures beyond temperature to understand urban neighborhood exposure to extreme heat, and expresses the importance of considering vulnerability differences among residents when analyzing neighborhood-scale impacts.
Journal Article
A comparative study of impervious surface extraction using Sentinel-2 imagery
2020
The accuracy and efficiency of impervious surface extraction using different algorithms vary greatly, and algorithm applicability depends on the study area. Therefore, it is necessary to carry out a comparative study of different algorithms across different study areas. This study compared six impervious surface extraction indices (i.e., normalized difference built-up index (NDBI), index-based built-up index (IBI), biophysical composition index (BCI), combinational build-up index (CBI), combinational biophysical composition index (CBCI), and enhanced normalized difference impervious surfaces index (ENDISI)) using Sentinel-2 imagery in Fuxian Lake Basin, Shenzhen City, and Nanjing City. Three study areas with different geographical locations, climatic conditions and altitudes can test spatial heterogeneity of different indices. The results show that: (1) All indices could be used to extract impervious surface, but BCI and CBI were greatly disturbed by water bodies; (2) CBCI, IBI, and NDBI were influenced by study area, while ENDISI could be used across all three study areas; (3) ENDISI algorithm was the best among the six algorithms with a much higher separability degree and an overall accuracy of more than 91.00%. ENDISI can extract impervious surface quickly and accurately from Sentinel-2 imagery across different study areas, and can be well applied in the field of impervious surface change monitoring.
Journal Article
Improving Fractional Impervious Surface Mapping Performance through Combination of DMSP-OLS and MODIS NDVI Data
2017
Impervious surface area (ISA) is an important parameter for many studies such as urban climate, urban environmental change, and air pollution; however, mapping ISA at the regional or global scale is still challenging due to the complexity of impervious surface features. The Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS) data have been used for ISA mapping, but high uncertainty existed due to mixed-pixel and data-saturation problems. This paper presents a new index called normalized impervious surface index (NISI), which is an integration of DMSP-OLS and Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) data, in order to reduce these problems. Meanwhile, this newly developed index is compared with previously used indices—Human Settlement Index (HSI) and Vegetation Adjusted Nighttime light Urban Index (VANUI)—in ISA mapping performance. We selected China as an example to map fractional ISA distribution through a support vector regression approach based on the relationship between the index and Landsat-derived ISA data. The results indicate that the proposed NISI provided better ISA estimation accuracy than HSI and VANUI, especially when the fractional ISA in a pixel is relatively large (i.e., >0.6) or very small (i.e., <0.2). This approach can be used to rapidly update ISA datasets at regional and global scales.
Journal Article