Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
56 result(s) for "impervious surface mapping"
Sort by:
An automatic, rapid and continuous impervious surface mapping framework based on historical land cover datasets
Long time series impervious surface mapping (ISM) is important for understanding urban expansion, environmental impacts, and urban planning. There are some historical global ISM products, such as GAIA and NUACI datasets, whereas they may not meet the user’s diverse application needs in the aspects of mapping timeliness, temporal resolution, and spatial resolution. Therefore, this study proposes an automatic, rapid, and continuous impervious surface mapping and updating framework based on historical land cover datasets without using other labeled data, to improve the updating speed and spatio-temporal resolution of impervious surface maps. The main process is divided into three steps: (1) Multi-temporal samples for classification were obtained by using GAIA dataset, FROM-GLC dataset and the unsupervised continuous change detection (CCD) algorithm; (2) Quarterly long time series ISM results (ISMs) were obtained by using multi-temporal samples and quarterly features; (3) The final results were obtained by using the post-processing operations in the obtained quarterly long time series ISMs to improve the mapping accuracy. The proposed framework is applied to eight cities around the world, and the total overall accuracy (OA) and Kappa of long time series ISMs with post-processing in the eight cities are 92.64% and 0.8525, respectively, improving the OA and Kappa of those without post-processing by 1.41% and 0.0281, respectively, and those of GAIA dataset by 4.57% and 0.0914, respectively, which proved the effectiveness of the proposed method. This study also analyzed the spatial patterns of impervious surface expansion in eight cities and identified different spatial patterns of expansion that existed among the cities, while capturing the abrupt change in the spatial patterns of expansion in Rosario and Novosibirsk after the second quarter of 2021. The proposed framework achieved rapid mapping and updating of impervious surface without any labeled samples, and has the potential to map the global impervious surface continuously.
Fine-Grained Permeable Surface Mapping through Parallel U-Net
Permeable surface mapping, which mainly is the identification of surface materials that will percolate, is essential for various environmental and civil engineering applications, such as urban planning, stormwater management, and groundwater modeling. Traditionally, this task involves labor-intensive manual classification, but deep learning offers an efficient alternative. Although several studies have tackled aerial image segmentation, the challenges in permeable surface mapping arid environments remain largely unexplored because of the difficulties in distinguishing pixel values of the input data and due to the unbalanced distribution of its classes. To address these issues, this research introduces a novel approach using a parallel U-Net model for the fine-grained semantic segmentation of permeable surfaces. The process involves binary classification to distinguish between entirely and partially permeable surfaces, followed by fine-grained classification into four distinct permeability levels. Results show that this novel method enhances accuracy, particularly when working with small, unbalanced datasets dominated by a single category. Furthermore, the proposed model is capable of generalizing across different geographical domains. Domain adaptation is explored to transfer knowledge from one location to another, addressing the challenges posed by varying environmental characteristics. Experiments demonstrate that the parallel U-Net model outperforms the baseline methods when applied across domains. To support this research and inspire future research, a novel permeable surface dataset is introduced, with pixel-wise fine-grained labeling for five distinct permeable surface classes. In summary, in this work, we offer a novel solution to permeable surface mapping, extend the boundaries of arid environment mapping, introduce a large-scale permeable surface dataset, and explore cross-area applications of the proposed model. The three contributions are enhancing the efficiency and accuracy of permeable surface mapping while progressing in this field.
An Improved Method for Impervious Surface Mapping Incorporating LiDAR Data and High-Resolution Imagery at Different Acquisition Times
Impervious surface mapping incorporating high-resolution remote sensing imagery has continued to attract increasing interest, as it can provide detailed information about urban structure and distribution. Previous studies have suggested that the combination of LiDAR data and high-resolution imagery for impervious surface mapping yields better performance than the use of high-resolution imagery alone. However, due to LiDAR data’s high cost of acquisition, it is difficult to obtain LiDAR data that was acquired at the same time as the high-resolution imagery in order to conduct impervious surface mapping by multi-sensor remote sensing data. Consequently, the occurrence of real landscape changes between multi-sensor remote sensing data sets with different acquisition times results in misclassification errors in impervious surface mapping. This issue has generally been neglected in previous works. Furthermore, observation differences that were generated from multi-sensor data—including the problems of misregistration, missing data in LiDAR data, and shadow in high-resolution images—also present obstacles to achieving the final mapping result in the fusion of LiDAR data and high-resolution images. In order to resolve these issues, we propose an improved impervious surface-mapping method incorporating both LiDAR data and high-resolution imagery with different acquisition times that consider real landscape changes and observation differences. In the proposed method, multi-sensor change detection by supervised multivariate alteration detection (MAD) is employed to identify the changed areas and mis-registered areas. The no-data areas in the LiDAR data and the shadow areas in the high-resolution image are extracted via independent classification based on the corresponding single-sensor data. Finally, an object-based post-classification fusion is proposed that takes advantage of both independent classification results while using single-sensor data and the joint classification result using stacked multi-sensor data. The impervious surface map is subsequently obtained by combining the landscape classes in the accurate classification map. Experiments covering the study site in Buffalo, NY, USA demonstrate that our method can accurately detect landscape changes and unambiguously improve the performance of impervious surface mapping.
SENTINEL-2A BASED IMPERVIOUSNESS MONITORING OF URBAN BUILT ENVIRONMENT
The cities where the future happens first, they are open, creative, cosmopolitan and sexy and the perfect antidote to reactionary nationalism but the urbanization in unplanned manner is becoming an environmental-social-economical threat to accommodate the huge number of population which is literally boosting the present situation of climate change due to global warming. Extracting, measuring and treating the urban area which compiles of dense built-up and complex road network, is very essential to decrease the negative impact on environment. If most of the impervious surfaces can be replaced with permeable or semi-permeable materials or solar panel then the habitation will be saved from natural disastrous events like heat wave and flash flood. Urbanization can be categorized mainly into two: a) Static (urban open space + built space) and b) Dynamic (transportation). The static and dynamic urbanizations largely consist of impermeable or impervious materials. Impervious surfaces are alluded as the anthropogenic elements through that water can't infiltrate into the soil, such as streets, driveways, parking areas, houses, structures etc. An urban area is a densely populated human settlement, facilitated with multiple infrastructures including built and un-built. These areas or settlements are categorized as towns, suburbs, cities by urban morphology. Through balancing the ratio between the un-built (urban space) and built (building & roads), urban disastrous events can be minimized. This research mainly focused on the extraction of impervious areas using regression modelling approach which is used to generate an impervious surface map from Sentinel-2A dataset of Delhi. Utilising multiple normalised indices can provide better classification results. This study shows that in urban areas imperviousness is becoming one of the prominent computational parameter and monitoring impervious areas could help us understand a lot of urban phenomena which are built-up induced and its rapid change in urban environment is giving rise to unhealthy living conditions.
LEARNING FROM NOISY SAMPLES FOR MAN-MADE IMPERVIOUS SURFACE MAPPING
Man-made impervious surfaces, indicating the human footprint on Earth, are an environmental concern because it leads to a chain of events that modifies urban air and water resources. To better map man-made impervious surfaces in any region of interest (ROI), we propose a framework for learning to map impervious areas in any ROIs from Sentinel-2 images with noisy reference data, using a pre-trained fully convolutional network (FCN). The FCN is first trained with reference data only available in Europe, which is able to provide reasonable mapping results even in areas outside of Europe. The proposed framework, aiming to achieve an improvement over the preliminary predictions for a specific ROI, consists of two steps: noisy training data pre-processing and model fine-tuning with robust loss functions. The framework is validated over four test areas located in different continents with a measurable improvement over several baseline results. It has been shown that a better impervious mapping result can be achieved through a simple fine-tuning with noisy training data, and label updating through robust loss functions allows to further enhance the performances. In addition, by analyzing and comparing the mapping results to baselines, it can be highlighted that the improvement is mainly coming from a decreased omission error. This study can also provide insights for similar tasks, such as large-scale land cover/land use classification when accurate reference data is not available for training.
Mapping Fragmented Impervious Surface Areas Overlooked by Global Land-Cover Products in the Liping County, Guizhou Province, China
Imperviousness is an important indicator for monitoring urbanization and environmental changes, and is evaluated widely in urban areas, but not in rural areas. An accurate impervious surface area (ISA) map in rural areas is essential to achieve environmental conservation and sustainable rural development. Global land-cover products such as MODIS MCD12Q1, ESA CCI-LC, and Global Urban Land are common resources for environmental practitioners to collect land-cover information including ISAs. However, global products tend to focus on large ISA agglomerations and may not identify fragmented ISA extents in less populated regions. Land-use planners and practitioners have to map ISAs if it is difficult to obtain such spatially explicit information from local governments. A common and consistent approach for rural ISA mapping is yet to be established. A case study of the Liping County, a typical rural region in southwest China, was undertaken with the objectives of assessing the global land-cover products in the context of rural ISA mapping and proposing a simple and feasible approach for the mapping. This approach was developed using Landsat 8 imagery and by applying a random forests classifier. An appropriate number of training samples were distributed to towns or villages across all townships in the study area for classification. The results demonstrate that the global land-cover products identified major ISA agglomerations, specifically at the county seat; however, other fragmented ISAs over the study area were overlooked. In contrast, the map created using the developed approach inferred ISAs across all townships with an overall accuracy of 91%. A large amount of training samples together with geographic information of towns or villages is the key suggestion to identify and map ISAs in rural areas.
Impervious Surfaces Mapping at City Scale by Fusion of Radar and Optical Data through a Random Forest Classifier
Urbanization increases the amount of impervious surfaces, making accurate information on spatial and temporal expansion trends essential; the challenge is to develop a cost- and labor-effective technique that is compatible with the assessment of multiple geographical locations in developing countries. Several studies have identified the potential of remote sensing and multiple source information in impervious surface quantification. Therefore, this study aims to fuse datasets from the Sentinel 1 and 2 Satellites to map the impervious surfaces of nine Pakistani cities and estimate their growth rates from 2016 to 2020 utilizing the random forest algorithm. All bands in the optical and radar images were resampled to 10 m resolution, projected to same coordinate system and geometrically aligned to stack into a single product. The models were then trained, and classifications were validated with land cover samples from Google Earth’s high-resolution images. Overall accuracies of classified maps ranged from 85% to 98% with the resultant quantities showing a strong linear relationship (R-squared value of 0.998) with the Copernicus Global Land Services data. There was up to 9% increase in accuracy and up to 12 % increase in kappa coefficient from the fused data with respect to optical alone. A McNemar test confirmed the superiority of fused data. Finally, the cities had growth rates ranging from 0.5% to 2.5%, with an average of 1.8%. The information obtained can alert urban planners and environmentalists to assess impervious surface impacts in the cities.
A Modified Normalized Difference Impervious Surface Index (MNDISI) for Automatic Urban Mapping from Landsat Imagery
Impervious surface area (ISA) is a key factor for monitoring urban environment and land development. Automatic mapping of impervious surfaces has attracted growing attention in recent years. Spectral built-up indices are considered promising to map ISA distributions due to their easy, parameter-free implementations. This study explores the potentials of impervious surface indices for ISA mapping from Landsat imagery using a case study area in Boston, USA. A modified normalized difference impervious surface index (MNDISI) is proposed, and a Gaussian-based automatic threshold selection method is used to identify the optimal MNDISI threshold for delineating impervious surfaces from background features. To evaluate its effectiveness, comparison analysis is conducted between MNDISI and the original NDISI using Landsat images from three sensors (TM/ETM+/OLI-TIRS) acquired in four seasons. Our results suggest that built-up indices are sensitive to image seasonality, and summer is the best time phase for ISA mapping. With reduced uncertainties from automatic threshold selection, the MNDISI extracts impervious surfaces from all Landsat images in summer with an overall accuracy higher than 87% and an overall Kappa coefficient higher than 0.74. The proposed method is superior to previous index-based ISA mapping from the enhanced thermal integration and automatic threshold selection. The ISA maps from the TM, ETM+ and OLI-TIRS images are not significantly different. With enlarged data pool when all Landsat sensors are considered and automation of threshold selection proposed in this study, the MNDISI could be an effective built-up index for rapid and automatic ISA mapping at regional and global scales.
Emerging Issues in Mapping Urban Impervious Surfaces Using High-Resolution Remote Sensing Images
Urban impervious surface (UIS) is a key parameter in climate change, environmental change, and sustainability. UIS extraction has been evolving rapidly in the past decades. However, high-resolution impervious surface mapping is a long-term need. There is an urgent requirement for impervious surface mapping from high-resolution remote sensing imagery. In this paper, we compare current extraction methods in terms of extraction units and extraction models and summarize their strengths and limitations. We discuss the challenges in impervious surface estimation from high spatial resolution remote sensing imagery in terms of selection of spatial resolution, spectral band, and extraction method. The uncertainties caused by clouds and snow, shadows, and vegetation occlusion are also analyzed. Automated sample labeling and remote sensing domain knowledge are the main directions in impervious surface extraction using deep learning methods. We should also focus on using continuous time series of high-resolution imagery and multi-source satellite imagery for dynamic monitoring of impervious surfaces.
Mapping global impervious surface area and green space within urban environments
The mapping of impervious surface area (ISA) and urban green space (UGS) is essential for improving the urban environmental quality toward ecological, livable, and sustainable goals. Currently, accurate ISA and UGS products are lacking in urban areas at the global scale. This study established regression models that estimated the fraction of ISA/UGS in global 30 cities for validation using MODIS NDVI and DMSP/OLS nighttime light imageries. A global dataset of ISA and UGS fraction with a spatial resolution of 250 m×250 m was developed using the regression model, with a mean relative error of 0.19 for its ISA. The results showed the global urban area of 76.29×10 4 km 2 , which was primarily distributed in central Europe, eastern Asia, and central and eastern North America. The urban land area in North America, Europe, and Asia was 66.3×10 4 km 2 , accounting for 86.91% of the world’s urban area; the urban land area of the top 50 countries accounted for 59.32% of the total urban land area in the world. The global ISA of 45.26×10 4 km 2 was mainly distributed in central and southern North America, eastern Asia, and Europe, as well as coastal regions around the world. The proportion of ISA situated in built-up areas on the continental scale followed the order of Africa (>70%)>South America>Oceania>Asia (>60%)>North America>Europe (>50%), and these areas were mostly in southeastern North America, southwestern Europe, and eastern and western Asia. North America, Europe, and Asia accounted for 89.44% of the world’s total UGS. The cities of developed countries in Europe and North America exposed a dramatic mosaic of ISA and UGS composites in urban construction. Therefore, the proportion of UGS is relatively high in those cities. However, in developing and underdeveloped countries, the proportion of UGS in built-up areas is relatively low, and urban environments need to be improved for livability.