Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
10 result(s) for "inherited arrhythmogenic syndromes"
Sort by:
Molecular autopsy: Twenty years of post-mortem diagnosis in sudden cardiac death
In the forensic medicine field, molecular autopsy is the post-mortem genetic analysis performed to attempt to unravel the cause of decease in cases remaining unexplained after a comprehensive forensic autopsy. This negative autopsy, classified as negative or non-conclusive, usually occurs in young population. In these cases, in which the cause of death is unascertained after a thorough autopsy, an underlying inherited arrhythmogenic syndrome is the main suspected cause of death. Next-generation sequencing allows a rapid and cost-effectives genetic analysis, identifying a rare variant classified as potentially pathogenic in up to 25% of sudden death cases in young population. The first symptom of an inherited arrhythmogenic disease may be a malignant arrhythmia, and even sudden death. Early identification of a pathogenic genetic alteration associated with an inherited arrhythmogenic syndrome may help to adopt preventive personalized measures to reduce risk of malignant arrhythmias and sudden death in the victim’s relatives, at risk despite being asymptomatic. The current main challenge is a proper genetic interpretation of variants identified and useful clinical translation. The implications of this personalized translational medicine are multifaceted, requiring the dedication of a specialized team, including forensic scientists, pathologists, cardiologists, pediatric cardiologists, and geneticists.
Actionable Variants of Unknown Significance in Inherited Arrhythmogenic Syndromes: A Further Step Forward in Genetic Diagnosis
Background/Objectives: Inherited arrhythmogenic syndromes comprise a heterogenic group of genetic entities that lead to malignant arrhythmias and sudden cardiac death. Genetic testing has become crucial to understand the disease etiology and allow for the early identification of relatives at risk; however, it requires an accurate interpretation of the data to achieve a clinically actionable outcome. This is particularly challenging for the large number of rare variants obtained by current high-throughput techniques, which are mostly classified as of unknown significance. Methods: In this work, we present a new algorithm for the genetic interpretation of the remaining rare variants in order to shed light on their potential clinical implications and reduce the burden of unknown significance. Results: Our study illustrates the potential utility of our individualized comprehensive stepwise analyses focused on the rare variants associated with IAS, which are currently classified as ambiguous, to further determine their trends towards pathogenicity or benign traits. Conclusions: We advocate for personalized disease-focused population frequency data and family segregation analyses for all rare variants that remain ambiguous to further clarify their role. The current ambiguity should not influence medical decisions, but a potential deleterious role would suggest a closer clinical follow-up and frequent genetic data review for a more personalized clinical approach.
Discerning the Ambiguous Role of Missense TTN Variants in Inherited Arrhythmogenic Syndromes
The titin gene (TTN) is associated with several diseases, including inherited arrhythmias. Most of these diagnoses are attributed to rare TTN variants encoding truncated forms, but missense variants represent a diagnostic challenge for clinical genetics. The proper interpretation of genetic data is critical for translation into the clinical setting. Notably, many TTN variants were classified before 2015, when the American College of Medical Genetics and Genomics (ACMG) published recommendations to accurately classify genetic variants. Our aim was to perform an exhaustive reanalysis of rare missense TTN variants that were classified before 2015, and that have ambiguous roles in inherited arrhythmogenic syndromes. Rare missense TTN variants classified before 2015 were updated following the ACMG recommendations and according to all the currently available data. Our cohort included 193 individuals definitively diagnosed with an inherited arrhythmogenic syndrome before 2015. Our analysis resulted in the reclassification of 36.8% of the missense variants from unknown to benign/likely benign. Of all the remaining variants, currently classified as of unknown significance, 38.3% showed a potential, but not confirmed, deleterious role. Most of these rare missense TTN variants with a suspected deleterious role were identified in patients diagnosed with hypertrophic cardiomyopathy. More than 35% of the rare missense TTN variants previously classified as ambiguous were reclassified as not deleterious, mainly because of improved population frequencies. Despite being inconclusive, almost 40% of the variants showed a potentially deleterious role in inherited arrhythmogenic syndromes. Our results highlight the importance of the periodical reclassification of rare missense TTN variants to improve genetic diagnoses and help increase the accuracy of personalized medicine.
Screening cardiologico delle famiglie con storia di morte improvvisa giovanile: quali patologie ricercare e con quali strumenti
La morte cardiaca improvvisa costituisce una delle principali cause di morte nei paesi industrializzati. In Italia l’incidenza di questo fenomeno è stimata intorno a 0.7/1000 abitanti/anno. La morte cardiaca improvvisa è la principale causa di morte improvvisa in bambini, adolescenti e giovani adulti. Si verifica spesso in soggetti apparentemente sani e può rappresentare la prima manifestazione di una patologia cardiaca sottostante. Questa problematica è divenuta di particolare interesse da quando è stato dimostrato che i defibrillatori impiantabili sono in grado di prevenire la morte improvvisa in popolazioni selezionate ad alto rischio. L’indagine autoptica eseguita sulla vittima documenta, in un’elevata percentuale dei casi (40% circa), la presenza di una malattia cardiaca ereditaria con o senza evidente substrato morfologico (morte improvvisa non spiegata). In questo contesto, lo screening cardiologico dei familiari dei soggetti deceduti improvvisamente, oltre a poter consentire l’identificazione della malattia nei casi senza substrato morfologico, è utile per predisporre strategie di prevenzione della morte improvvisa in altri membri della stessa famiglia. In questa rassegna viene esaminata la letteratura a riguardo e vengono analizzati gli algoritmi diagnostici per lo screening delle famiglie con storia di morte improvvisa. Viene riportata inoltre l’esperienza in questo campo maturata nella Regione Lazio nel periodo compreso tra il 2001 e il 2008.
Genetic Background and Clinical Phenotype in an Italian Cohort with Inherited Arrhythmia Syndromes and Arrhythmogenic Cardiomyopathy (ACM): A Whole-Exome Sequencing Study
Inherited arrhythmia syndromes include several different diseases, as well as Brugada syndrome (BrS), long QT syndrome (LQTS), catecholaminergic polymorphic ventricular tachycardia (CPVT), and short QT syndrome (SQTS). They represent, together with arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C), an important cause of sudden cardiac death in the young. Most arrhythmia syndromes are inherited in an autosomal dominant manner, and genetic studies are suggested.: to report the spectrum of genetic variations and clinical phenotype in an Italian cohort with confirmed inherited arrhythmia syndromes and arrhythmogenic cardiomyopathy using whole-exome sequencing (WES). Patients with confirmed inherited arrhythmia syndromes and hereditary cardiomyopathy were recruited at the Cardiology Unit, University Polyclinic Hospital of Foggia, Italy and were included in this study. Genomic DNA samples were extracted from peripheral blood and conducted for WES. The variants were annotated using BaseSpace Variant Interpreter Annotation Engine 3.15.0.0 (Illumina). Reported variants were investigated using ClinVar, VarSome Franklin and a literature review. They were categorised agreeing to the criteria of the American College of Medical Genetics and Genomics. Overall, 62 patients were enrolled. Most of them had a clinical diagnosis of BrS (n 48, 77%). The remaining patients included in the present study had diagnosis of confirmed LQT (n 7, 11%), AR-DCM (n 4, 6.5%), ARVD (n 2, 3%), and SQT (n 1, 1.6%). Using the WES technique, 22 variants in 15 genes associated with Brugada syndrome were identified in 21 patients (34%). Among these, the SCN5A gene had the highest number of variants (6 variants, 27%), followed by KCNJ5 and CASQ2 (2 variants). Only one variant was identified in the remaining genes. In 27 patients with a clinical diagnosis of BrS, no gene variant was detected. In patients with confirmed LQT, SQT, 10 variants in 9 genes were identified. Among patients with ARVD and AR-DCM, 6 variants in 5 genes were found. Variants found in our cohort were classified as pathogenic (6), likely pathogenic (3), of uncertain significance (26), and benign (1). Two additional gene variants were classified as risk factors. In this study, 13 novel genetic variations were recognized to be associated with inherited arrhythmogenic cardiomyopathies. Our understanding of inherited arrhythmia syndromes continues to progress. The era of next-generation sequencing has advanced quickly, given new genetic evidence including pathogenicity, background genetic noise, and increased discovery of variants of uncertain significance. Although NGS study has some limits in finding the full genetic data of probands, large-scale gene sequencing can promptly be applied in real clinical practices, especially in inherited and possibly fatal arrhythmia syndromes.
Genetic analysis of sick sinus syndrome in a family harboring compound CACNA1C and TTN mutations
Sick sinus syndrome (SSS) is a sinus node dysfunction characterized by severe sinus bradycardia. SSS results in insufficient blood supply to the brain, heart, kidneys, and other organs and is associated with the increased risk of sudden cardiac death. Bradyarrhythmia appears in the absence of any associated cardiac pathology and displays a genetic legacy. The present study identified a family with primary manifestation of sinus bradycardia (five individuals) along with early repolarization (four individuals) and atrial fibrillation (one individual). Targeted exome sequencing was used to screen exons and adjacent splice sites of 61 inherited arrhythmia-associated genes, to detect pathogenic genes and variant sites in the proband. Family members were sequenced by Sanger sequencing and protein functions predicted by Polyphen-2 software. A total of three rare variants were identified in the family, including two missense variants in calcium voltage-gated channel subunit alpha1 C (CACNA1C) (gi:193788541, NM_001129843), c.1786G>A (p.V596M) and c.5344G>A (p.A1782T), and one missense variant in titin (TTN) c.49415G>A (p.R16472H) (gi:291045222, NM_003319). The variants p.V596M and p.R16472H were predicted to be deleterious and resulted in alterations in the amino acid type and sequence of the polypeptide chain, which may partially or completely inactivate the encoded protein. The comparison of literature, gene database, and pedigree phenotype analysis suggests that p.V596M or p.R16472H variants are pathogenic. The complex overlapping variants at three loci lead to a more severe phenotype in the proband, and may increase the susceptibility of individuals to atrial fibrillation. The simultaneous occurrence of V596M and R16472H may increase the severity of early repolarization. Various family members may have carried heterozygous mutants of p.A1782T and p.R16472H due to genetic heterogeneity, however did not exhibit clinical signs of cardiac electrophysiological alterations, potentially attributable to the low vagal tone. To the best of the author's knowledge, this is the first study to suggest the involvement of the novel missense CACNA1C c.1786G>A and TTN c.49415G>A variants in the inheritance of symptomatic bradycardia and development of SSS.
The usual suspects in sudden cardiac death of the young: a focus on inherited arrhythmogenic diseases
Up to 14,500 young individuals die suddenly every year in Europe of cardiac pathologies. The majority of these tragic events are related to a group of genetic defects that predispose the development of malignant arrhythmias (inherited arrhythmogenic diseases [IADs]). IADs include both cardiomyopathies (hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, dilated cardiomyopathy) and channelopathies (long QT syndrome, short QT syndrome, Brugada syndrome and catecholaminergic polymorphic ventricular tachycardia). Every time an IAD is identified in a patient, other individuals in his/her family may be at risk of cardiac events. However; if a timely diagnosis is made, simple preventative measures may be applied. Genetic studies play a pivotal role in the diagnosis of IADs and may help in the management of patients and their relatives.
Recent advances in genetic testing and counseling for inherited arrhythmias
Abstract Inherited arrhythmias, such as cardiomyopathies and cardiac ion channelopathies, along with coronary heart disease (CHD) are three most common disorders that predispose adults to sudden cardiac death. In the last three decades, causal genes in inherited arrhythmias have been successfully identified. At the same time, it has become evident that the genetic architectures are more complex than previously known. Recent advancements in DNA sequencing technology (next generation sequencing) have enabled us to study such complex genetic traits. This article discusses indications for genetic testing of patients with inherited arrhythmias. Further, it describes the benefits and challenges that we face in the era of next generation sequencing. Finally, it briefly discusses genetic counseling, in which a multidisciplinary approach is required due to the increased complexity of the genetic information related to inherited arrhythmias.
iPCS Cell Modeling of Inherited Cardiac Arrhythmias
Opinion statement The study of inherited cardiac disorders is hampered by the lack of suitable in vitro human cardiac disease models and relevant functional assays. A potential solution to this cell-sourcing challenge may be the recently described human induced pluripotent stem cell (hiPSC) technology. Pioneering studies were successful in establishing patient-specific, hiPSC-derived cardiomyocyte models of the most common inherited cardiac arrhythmogenic disorders, such as the different long QT syndrome subtypes (types 1, 2, 3, 8), overlap syndrome LQTS3/Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia (CPVT) types 1 and 2, and arrhythmogenic right ventricular cardiomyopathy (ARVC). These studies initially demonstrated the ability of the generated hiPSC models to recapitulate the disease processes in the culture dish. More recently, such studies were also able to provide new mechanistic insights into the disease processes, as well as to derive a unique drug-screening platform to test existing and novel therapeutic treatment options in an environment resembling the human physiological milieu. Moreover, initial evidence suggests that such models can help to optimize drug treatment in a personalized manner in the future. Nevertheless, several hurdles still exist for using hiPSC-based models for the aforementioned tasks, such as the hiPSC-derived cardiomyocytes’ relatively immature phenotype, and also the resulting cell heterogeneity. Extensive research work is ongoing to address these challenges, as well as to add new opportunities for the field by utilizing recent advances in gene editing technologies. Here, we discuss the significant findings that hiPSC-based models have provided for each of the inherited cardiac arrhythmia syndromes so far, and the current challenges that this technique is facing.
Inherited Heart Diseases
This chapter contains sections titled: Introduction Cardiomyopathies Specific conduction system involvement: Lenegre syndrome Ionic channel disorders in the absence of apparent structural heart disease: channelopathies References