Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1 result(s) for "injected frequency component currents"
Sort by:
Simple sensorless algorithm for interior permanent magnet synchronous motors based on high-frequency voltage injection method
This study presents a simple sensorless algorithm based on the high-frequency signal injection for an interior permanent magnet synchronous motor. The sensorless drive using a square-wave-type injection signal has an enhanced control bandwidth and reduced acoustic noise owing to the reduction of filters and availability of high injection frequency. However, this method still needs discrete filters to extract the fundamental and the injected frequency component currents; so it has a limitation in enhancing the sensorless control performance. Therefore this study proposes a simple algorithm, which eliminates these filters and further simplifies the signal process for estimating the rotor position. As a result, the overall sensorless control can be implemented easily without any filters while providing an enhanced dynamics. Additionally, a detection method of an initial rotor position for start-up by using the same square-wave-type voltage injection is introduced. The experimental result shows that the speed control bandwidth in the sensorless drive simplified by the proposed algorithm becomes very close to the one achieved in sensored drives.