Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
1,231
result(s) for
"insect gall"
Sort by:
Recent Progress Regarding the Molecular Aspects of Insect Gall Formation
2021
Galls are characteristic plant structures formed by cell size enlargement and/or cell proliferation induced by parasitic or pathogenic organisms. Insects are a major inducer of galls, and insect galls can occur on plant leaves, stems, floral buds, flowers, fruits, or roots. Many of these exhibit unique shapes, providing shelter and nutrients to insects. To form unique gall structures, gall-inducing insects are believed to secrete certain effector molecules and hijack host developmental programs. However, the molecular mechanisms of insect gall induction and development remain largely unknown due to the difficulties associated with the study of non-model plants in the wild. Recent advances in next-generation sequencing have allowed us to determine the biological processes in non-model organisms, including gall-inducing insects and their host plants. In this review, we first summarize the adaptive significance of galls for insects and plants. Thereafter, we summarize recent progress regarding the molecular aspects of insect gall formation.
Journal Article
New Gall-Forming Insect Model, Smicronyx madaranus: Critical Stages for Gall Formation, Phylogeny, and Effectiveness of Gene Functional Analysis
2024
The molecular mechanisms underlying insect gall formation remain unclear. A major reason for the inability to identify the responsible genes is that only a few systems can be experimentally validated in the laboratory. To overcome these problems, we established a new galling insect model, Smicronyx madaranus. Our manipulation experiments using nail polish sealing and insecticide treatment revealed an age-dependent change in gall formation by S. madaranus; adult females and larvae are responsible for gall induction and enlargement, respectively. Furthermore, it has been suggested that substances released during oviposition and larval feeding are involved in each process. Phylogenetic analysis showed that gall-forming weevils, including S. madaranus, belong to two distinct lineages that utilize different host plants. This may indicate that gall-forming traits evolved independently in these Smicronyx lineages. The efficacy of RNA interference (RNAi) in S. madaranus was confirmed by targeting the multicopper oxidase 2 gene. It is expected that the mechanisms of gall formation will be elucidated by a comprehensive functional analysis of candidate genes using RNAi and the S. madaranus galling system in the near future.
Journal Article
Metabolic and functional distinction of the Smicronyx sp. galls on Cuscuta campestris
by
Zagorchev, Lyuben I.
,
Teofanova, Denitsa R.
,
Li, Junmin
in
Agricultural practices
,
Agriculture
,
Animals
2018
Weevils of the genus Smicronyx are gall-forming insects, widely distributed on parasitic flowering plants of the genus Cuscuta. Thus, they are considered epiparasites and potential method for biological control of their agriculturally harmful hosts. Although several reports on gall formation in Cuscuta spp. exist, the metabolic and functional changes, occurring in the gall, remained largely unknown. Smicronyx sp. galls, collected from a wild Cuscuta campestris population, were dissected into two distinct regions, inner and outer cortex, defined by the higher chlorophyll content of the inner cortex. Based on hydrolytic and antioxidant enzymes activity and isoenzymatic profiles as analyzed after electrophoretic separation, we suggested that the gall differs in its metabolic activity from the non-infected plant tissue. While the outer cortex serves as a region of nutrient storage and mobilization, the inner cortex is directly involved in larvae nutrition. The increase in metabolic activity resulted in significantly increased superoxide dismutase activity in the gall, while several other antioxidant enzymes diminished. The present research offers new insights into the functionally differing regions of Smicronyx galls and the metabolic changes, induced in C. campestris in result of the gall formation.
Journal Article
Plant phenological asynchrony and community structure of gall‐inducing insects associated with a tropical tree species
by
Fagundes, Marcilio
,
Xavier, Renata Cristiane Ferreira
,
Reis‐Junior, Ronaldo
in
Abundance
,
Chemical compounds
,
Community structure
2018
The dynamics of occurrence of target organs in plant populations produces windows of opportunity that directly and indirectly affect the structure of herbivore communities. However, mechanisms that drive herbivore specialization between resource patches are still poorly known. In this study, we tested three hypotheses related to variation in host plant phenology and community structure (i.e., composition, richness, and abundance) of gall‐forming species: (a) plants with early leaf‐flushing in the season will have greater vegetative growth and high contents of secondary chemical compounds; (b) gall‐inducing insect community structure changes among temporary resource patches of the host; and (c) interspecific competition is a probable mechanism that drives gall‐inducing insect community structure on Copaifera langsdorffii. We monitored daily a total of 102 individuals of the super‐host C. langsdorffii from August 2012 to May 2013, to characterize the leaf flushing time of each host plant. The leaf flushing time had a positive relationship with the number of folioles per branch and a negative relationship with branch growth. We sampled a total of 4,906 galls belonging to 24 gall‐inducing insect species from 102 individuals of C. langsdorffii. In spite of some gall‐inducing species presented high abundance on early leaf‐flushing plants, direct and indirect effects of plant phenology on galling insect abundance was species dependent. At the community level, our study revealed that the quality and quantity of plant resources did not affect the richness and abundance of gall‐inducing insects associated with C. langsdorffii. However, the richness and composition of gall‐inducing species varied according to the variation in leaf flushing time of the host plant. The results of null model analysis showed that galls co‐occurrence on C. langsdorffii trees differ more than expected by chance and that interspecific competition can be one potential mechanism structuring this gall‐inducing insect community. The richness and composition of gall‐inducing species varied according to the variation in leaf flushing time of the host plant. The results of null models analysis showed that galls co‐occurrence on Copaifera langsdorffii trees differ than expected by chance and interspecific competition can be one potential mechanism structuring gall‐forming community.
Journal Article
The localization of phytohormones within the gall-inducing insect Eurosta solidaginis (Diptera: Tephritidae)
by
Fuse, Megumi
,
Connor, Edward F.
,
Ponce, Gabriela E.
in
Auxins
,
Behavioral Sciences
,
Biomedical and Life Sciences
2021
The phytohormone production hypothesis suggests that organisms, including insects, induce galls by producing and secreting plant growth hormones. Auxins and cytokinins are classes of phytohormones that induce cell growth and cell division, which could contribute to the plant tissue proliferation which constitutes the covering gall. Bacteria, symbiotic with insects, may also play a part in gall induction by insects through the synthesis of phytohormones or other effectors. Past studies have shown that concentrations of cytokinins and auxins in gall-inducing insects are higher than in their host plants. However, these analyses have involved whole-body extractions. Using immunolocalization of cytokinin and auxin, in the gall-inducing stage of
Eurosta solidaginis,
we found both phytohormones to localize almost exclusively to the salivary glands. Co-localization of phytohormone label with a nucleic acid stain in the salivary glands revealed the absence of
Wolbachia sp.,
the bacterial symbiont of
E. solidaginis,
which suggests that phytohormone production is symbiont independent. Our findings are consistent with the hypothesis that phytohormones are synthesized in and secreted from the salivary glands of
E. solidaginis
into host-plant tissues for the purpose of manipulating the host plant.
Journal Article
Fine Morphology of Antennal and Ovipositor Sensory Structures of the Gall Chestnut Wasp, Dryocosmus kuriphilus
by
Sevarika, Milos
,
Rossi Stacconi, Marco Valerio
,
Romani, Roberto
in
Castanea
,
Dryocosmus kuriphilus
,
eggs
2021
Dryocosmus kuriphilus is a gall-inducing insect, which can cause significant damage on plants of the genus Castanea Mill., 1754. Antennae and ovipositor are the main sensory organs involved in the location of suitable oviposition sites. Antennal sensilla are involved in the host plant location, while ovipositor sensilla assess the suitability of the ovipositional bud. On both organs, diverse sensillar organs are present. Here, the distribution and ultrastructural organization of the sensilla were investigated by scanning and transmission electron microscopy. The antennae of D. kuriphilus are filiform and composed of 14 antennomeres, with the distal flagellomere bearing the highest number of sensilla. On the antennae, 6 sensilla types were found; sensilla chaetica, campaniformia, coeloconica-I, coeloconica-II, trichoidea and placoidea. The sensilla placoidea and trichoidea were the most abundant types. On the external walls of the ovipositor, gustatory and mechanoreceptive sensilla were observed. Internally, the egg channel hosted two additional sensory structures. The putative functional role of each sensilla in the context of insect’s ecology is discussed as well as the ovipositional mechanism used by this insect.
Journal Article
Feeding and Other Gall Facets: Patterns and Determinants in Gall Structure
by
Álvarez, Rafael
,
Ferreira, Bruno G.
,
Bragança, Gracielle P.
in
Agrobacterium
,
Analysis
,
Anatomy
2019
Galls are neoformed structures induced by specific animals, fungi, bacteria, virus or some parasitic plants on their host plant organs. Developmental processes are well known in Agrobacterium tumefasciens galls, but the animal-induced galls have a striking anatomical diversity, concerning several patterns, which were reunited herein. Anatomical traits observed in animal-induced galls involve manipulation of plant morphogenesis in convergent ways. Nematode, mite and insect galls usually contain homogeneous storage parenchyma and develop due to hyperplasia and cell hypertrophy. The development of typical nutritive tissues, giant cells, or hypertrophied vascular bundles may occur. Some other anatomical features may be usually restricted to galls induced by specific taxa, but they may eventually be related to the developmental potentialities of the host plants. The combination of distinct morphogenetic peculiarities in each gall system culminates in extant gall structural diversity. Convergent anatomical traits are observed according to the feeding mode of the gall inducers, representing potentiation or inhibition of similar events of host plant morphogenesis and cell redifferentiation, independent of gall-inducing taxa.
Journal Article
Phytohormones and willow gall induction by a gall-inducing sawfly
by
Yoshihito Suzuki
,
Tadao Asami
,
Hiroki Yamaguchi
in
adults
,
Animal glands
,
Animal Structures - metabolism
2012
A variety of insect species induce galls on host plants. Several studies have implicated phytohormones in insect-induced gall formation. However, it has not been determined whether insects can synthesize phytohormones. It has also never been established that phytohormones function in gall tissues.
Liquid chromatography and tandem mass spectrometry (LC/MS/MS) were used to analyse concentrations of endogenous cytokinins and the active auxin IAA in the gall-inducing sawfly (Pontania sp.) and its host plant, Salix japonica. Feeding experiments demonstrated the ability of sawfly larvae to synthesize IAA from tryptophan. Gene expression analysis was used to characterize hormonal signalling in galls.
Sawfly larvae contain high concentrations of IAA and t-zeatin, and produce IAA from tryptophan. The glands of adult sawflies, the contents of which are injected into leaves upon oviposition and are involved in the initial stages of gall formation, contain an extraordinarily high concentration of t-zeatin riboside. Transcript levels of some auxin-and cytokinin-responsive genes are significantly higher in gall tissue than in leaves.
The abnormally high concentration of t-zeatin riboside in the glands strongly suggests that the sawfly can synthesize cytokinins as well as IAA. Gene expression profiles indicate high levels of auxin and cytokinin activities in growing galls.
Journal Article
Impact of an invasive oak gall wasp on a native butterfly: a test of plant-mediated competition
by
Prior, Kirsten M.
,
Hellmann, Jessica J.
in
Adaptor Proteins, Signal Transducing - physiology
,
adults
,
Animal and plant ecology
2010
Phytophagous insects commonly interact through shared host plants. These interactions, however, do not occur in accordance with traditional paradigms of competition, and competition in phytophagous insects is still being defined. It remains unclear, for example, if particular guilds of insects are superior competitors or important players in structuring insect communities. Gall-forming insects are likely candidates for such superior competitors because of their ability to manipulate host plants, but their role as competitors is understudied. We investigate the effect of invasive populations of an oak gall wasp,
Neuroterus saltatorius
, on a native specialist butterfly,
Erynnis propertius
, as mediated by their shared host plant,
Quercus garryana
. This gall wasp occurs at high densities in its introduced range, where we stocked enclosures with caterpillars on trees that varied in gall wasp density. Biomass production of butterflies was lower in enclosures on high-density than on low-density trees because overwintering caterpillars were smaller, and fewer of them eclosed into adults the following spring. To see if the gall wasp induced changes in foliar quality, we measured host plant quality before and after gall induction on 30 trees each at two sites. We found a positive relationship between gall wasp density and the percentage change in foliar C:N, a negative relationship between gall wasp density and the percentage change in foliar water at one site, and no relationship between the percentage change in protein-binding capacity (i.e., phenolics) and gall-wasp density. Additionally, there was a negative relationship between foliar quality and butterfly performance. Our results provide evidence for a plant-mediated impact of an invasive oak gall wasp on a native butterfly and suggest that gall wasps could act as superior competitors, especially when they occur at high densities.
Journal Article