Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
7,023 result(s) for "insect pollinator"
Sort by:
Status of pollinators in North America
Pollinators--insects, birds, bats, and other animals that carry pollen from the male to the female parts of flowers for plant reproduction--are an essential part of natural and agricultural ecosystems throughout North America.
Non-bee insects are important contributors to global crop pollination
Wild and managed bees are well documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change. Non-bee pollinators include flies, beetles, moths, butterflies, wasps, ants, birds, and bats, among others. Here we focus on non-bee insects and synthesize 39 field studies from five continents that directly measured the crop pollination services provided by non-bees, honey bees, and other bees to compare the relative contributions of these taxa. Non-bees performed 25–50% of the total number of flower visits. Although non-bees were less effective pollinators than bees per flower visit, they made more visits; thus these two factors compensated for each other, resulting in pollination services rendered by non-bees that were similar to those provided by bees. In the subset of studies that measured fruit set, fruit set increased with non-bee insect visits independently of bee visitation rates, indicating that non-bee insects provide a unique benefit that is not provided by bees. We also show that non-bee insects are not as reliant as bees on the presence of remnant natural or seminatural habitat in the surrounding landscape. These results strongly suggest that non-bee insect pollinators play a significant role in global crop production and respond differently than bees to landscape structure, probably making their crop pollination services more robust to changes in land use. Non-bee insects provide a valuable service and provide potential insurance against bee population declines.
Chronic impairment of bumblebee natural foraging behaviour induced by sublethal pesticide exposure
Insect pollination is a vital ecosystem service that maintains biodiversity and sustains agricultural crop yields. Social bees are essential insect pollinators, so it is concerning that their populations are in global decline. Although pesticide exposure has been implicated as a possible cause for bee declines, we currently have a limited understanding of the risk these chemicals pose. Whilst environmental exposure to pesticides typically has non‐lethal effects on individual bees, recent reports suggest that sublethal exposure can affect important behavioural traits such as foraging. However, at present, we know comparatively little about how natural foraging behaviour is impaired and the relative impacts of acute and chronic effects. Using Radio‐Frequency Identification (RFID) tagging technology, we examined how the day‐to‐day foraging patterns of bumblebees (Bombus terrestris) were affected when exposed to either a neonicotinoid (imidacloprid) and/or a pyrethroid (λ‐cyhalothrin) independently and in combination over a four‐week period. This is the first study to provide data on the impacts of combined and individual pesticide exposure on the temporal dynamics of foraging behaviour in the field over a prolonged period of time. Our results show that neonicotinoid exposure has both acute and chronic effects on overall foraging activity. Whilst foragers from control colonies improved their pollen foraging performance as they gained experience, the performance of bees exposed to imidacloprid became worse: chronic behavioural impairment. We also found evidence, suggesting that pesticide exposure can change forager preferences for the flower types from which they collect pollen. Our findings highlight the importance of considering prolonged exposure (which happens in the field) when assessing the risk that pesticides pose to bees. The effects of chronic pesticide exposure could have serious detrimental consequences for both colony survival and also the pollination services provided by these essential insect pollinators.
General and species-specific impacts of a neonicotinoid insecticide on the ovary development and feeding of wild bumblebee queens
Bumblebees are essential pollinators of crops and wild plants, but are in decline across the globe. Neonicotinoid pesticides have been implicated as a potential driver of these declines, but most of our evidence base comes from studies of a single species. There is an urgent need to understand whether such results can be generalized across a range of species. Here, we present results of a laboratory experiment testing the impacts of field-relevant doses (1.87–5.32 ppb) of the neonicotinoid thiamethoxam on spring-caught wild queens of four bumblebee species: Bombus terrestris, B. lucorum, B. pratorum and B. pascuorum. Two weeks of exposure to the higher concentration of thiamethoxam caused a reduction in feeding in two out of four species, suggesting species-specific anti-feedant, repellency or toxicity effects. The higher level of thiamethoxam exposure resulted in a reduction in the average length of terminal oocytes in queens of all four species. In addition to providing the first evidence for general effects of neonicotinoids on ovary development in multiple species of wild bumblebee queens, the discovery of species-specific effects on feeding has significant implications for current practices and policy for pesticide risk assessment and use.
Foraging bumblebees acquire a preference for neonicotinoid-treated food with prolonged exposure
Social bees represent an important group of pollinating insects that can be exposed to potentially harmful pesticides when foraging on treated or contaminated flowering plants. To investigate if such exposure is detrimental to bees, many studies have exclusively fed individuals with pesticide-spiked food, informing us about the hazard but not necessarily the risk of exposure. While such studies are important to establish the physiological and behavioural effects on individuals, they do not consider the possibility that the risk of exposure may change over time. For example, many pesticide assays exclude potential behavioural adaptations to novel toxins, such as rejection of harmful compounds by choosing to feed on an uncontaminated food source, thus behaviourally lowering the risk of exposure. In this paper, we conducted an experiment over 10 days in which bumblebees could forage on an array of sucrose feeders containing 0, 2 and 11 parts per billion of the neonicotinoid pesticide thiamethoxam. This more closely mimics pesticide exposure in the wild by allowing foraging bees to (i) experience a field realistic range of pesticide concentrations across a chronic exposure period, (ii) have repeated interactions with the pesticide in their environment, and (iii) retain the social cues associated with foraging by using whole colonies. We found that the proportion of visits to pesticide-laced feeders increased over time, resulting in greater consumption of pesticide-laced sucrose relative to untreated sucrose. After changing the spatial position of each feeder, foragers continued to preferentially visit the pesticide-laced feeders which indicates that workers can detect thiamethoxam and alter their behaviour to continue feeding on it. The increasing preference for consuming the neonicotinoid-treated food therefore increases the risk of exposure for the colony during prolonged pesticide exposure. Our results highlight the need to incorporate attractiveness of pesticides to foraging bees (and potentially other insect pollinators) in addition to simply considering the proportion of pesticide-contaminated floral resources within the foraging landscape.
Protecting pollinators : nurturing sustainable communities with pollinator gardens
Without pollinators, like bees and butterflies, the world would be a dull and bland place. How can we make sure these creatures are always fluttering, soaring, and buzzing around us? And how does their presence make our communities more sustainable overall? Join us for a conversation about turning areas historically dominated by invasive species into vibrant pollinator habitats. See why these pollinators are so important not just to our natural world, but to our local neighborhoods as well. And, get perspectives from project leaders that successfully created thriving pollinator gardens in their local communities.
Divergence and convergence of gut microbiomes of wild insect pollinators
Pollination services provided by wild insect pollinators are critical to natural ecosystems and crops around the world. There is an increasing appreciation that the gut microbiota of these insects influences their health and consequently their services. However, pollinator gut microbiota studies have focused on well-described social bees, but rarely include other, more phylogenetically divergent insect pollinators. To expand our understanding, we explored the insect pollinator microbiomes across three insect orders through two DNA sequencing approaches. First, in an exploratory 16S amplicon sequencing analysis of taxonomic community assemblages, we found lineage-specific divergences of dominant microbial genera and microbiota community composition across divergent insect pollinator genera. However, we found no evidence for a strong broad-scale phylogenetic signal, which we see for community relatedness at finer scales. Subsequently, we utilized metagenomic shotgun sequencing to obtain metagenome-assembled genomes and assess the functionality of the microbiota from pollinating flies and social wasps. We uncover a novel gut microbe from pollinating flies in the family Orbaceae that is closely related to Gilliamella spp. from social bees but with divergent functions. We propose this novel species be named Candidatus Gilliamella eristali . Further metagenomes of dominant fly and wasp microbiome members suggest that they are largely not host-insect adapted and instead may be environmentally derived. Overall, this study suggests selective processes involving ecology or physiology, or neutral processes determining microbe colonization may predominate in the turnover of lineages in insect pollinators broadly, while evolution with hosts may occur only under certain circumstances and on smaller phylogenetic scales. Wild insect pollinators provide many key ecosystem services, and the microbes associated with these insect pollinators may influence their health. Therefore, understanding the diversity in microbiota structure and function, along with the potential mechanisms shaping the microbiota across diverse insect pollinators, is critical. Our study expands beyond existing knowledge of well-studied social bees, like honey bees, including members from other bee, wasp, butterfly, and fly pollinators. We infer ecological and evolutionary factors that may influence microbiome structure across diverse insect pollinator hosts and the functions that microbiota members may play. We highlight significant differentiation of microbiomes among diverse pollinators. Closer analysis suggests that dominant members may show varying levels of host association and functions, even in a comparison of closely related microbes found in bees and flies. This work suggests varied importance of ecological, physiological, and non-evolutionary filters in determining structure and function across largely divergent wild insect pollinator microbiomes.
Beyond the Decline of Wild Bees: Optimizing Conservation Measures and Bringing Together the Actors
Wild bees are facing a global decline mostly induced by numerous human factors for the last decades. In parallel, public interest for their conservation increased considerably, namely through numerous scientific studies relayed in the media. In spite of this broad interest, a lack of knowledge and understanding of the subject is blatant and reveals a gap between awareness and understanding. While their decline is extensively studied, information on conservation measures is often scattered in the literature. We are now beyond the precautionary principle and experts are calling for effective actions to promote wild bee diversity and the enhancement of environment quality. In this review, we draw a general and up-to-date assessment of the conservation methods, as well as their efficiency and the current projects that try to fill the gaps and optimize the conservation measures. Targeting bees, we focused our attention on (i) the protection and restoration of wild bee habitats, (ii) the conservation measures in anthropogenic habitats, (iii) the implementation of human made tools, (iv) how to deal with invasive alien species, and finally (v) how to communicate efficiently and accurately. This review can be considered as a needed catalyst to implement concrete and qualitative conversation actions for bees.
Exotic insect pollinators and native pollination systems
Insect pollinators have been relocated by humans for millennia and are, thus, among the world’s earliest intentional exotic introductions. The introduction of managed bees for crop pollination services remains, to this day, a common and growing practice worldwide and the number of different bee species that are used commercially is increasing. Being generalists and frequently social, these exotic species have the potential to have a wide range of impacts on native bees and plants. Thus, understanding the consequences of introduced species on native pollinator systems is a priority. We generated a global database and evaluated the impacts of the two main groups of invasive bees, Apis mellifera and Bombus spp., on their pollination services to native flora and impacts on native pollinators. In a meta-analysis, we found that per-visit pollination efficiency of exotic pollinators was, on average, 55% less efficient than native pollinators when visiting flowers of native species. In contrast to per-visit pollination efficiency, our metaanalysis showed that visitation frequency by exotic pollinators was, on average, 80% higher than native pollinators. The higher visitation frequency of exotic pollinators overcame deficiencies in pollen removal and transfer resulting in seed/fruit set levels similar to native pollinators. Also, evidence showed that exotic pollinators can displace native insect and bird pollinators. However, the direct effects of exotic insect pollinators on native pollination systems can be context dependent, ranging from mutualism to antagonism.
Bacterial communities of wild bee species and the western honey bee (Apis mellifera) (Hymenoptera: Apoidea): Alpine insights
Abstract Wild bees are decreasing in species diversity and populations due to human impact. The abundance of the western honey bee (Apis mellifera L.) experiences an inverse trend, enhancing competition with wild bees and the probability of microbiome exchange. Addressing this exchange, we studied the gut microbiome composition of wild and honey bees, focusing on patterns indicating honey bee influence. Three solitary wild bee species (large scabious mining bee [Andrena hattorfiana F.], grey-backed mining bee (Andrena vaga Panzer), and European orchard bee [Osmia cornuta Latreille]) as well as bumble bees as representatives of eusocial wild bees (Bombus spp. Latreille) and honey bees were sampled in the Austrian Alps. Subsequent 16S ribosomal DNA sequencing revealed the composition of the bacterial communities. The bee groups differed concerning their bacterial composition, with honey bees having the least variation among individuals and a low number of exclusive bacterial taxa and bumble bees the highest bacterial diversity. High honey bee densities corresponded with lower bacterial diversity in wild bees and a higher bacterial similarity between wild and honey bees. Some bacterial taxa were found for the first time in the studied bee groups. Furthermore, the composition of bacterial communities differed between solitary and social bees. We found the first hints that high honey bee density negatively impacts wild bees through alterations of wild bee microbiomes. Future studies should focus on understanding microbiome transmission mechanisms and their consequences for wild bees. Suggestions on how to consider wild bee fitness are indispensable in halting the biodiversity crisis. Graphical abstract Graphical Abstract