Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
214 result(s) for "insertion/deletion polymorphisms"
Sort by:
Additive effects of the major risk alleles of IRF5 and STAT4 in primary Sjögren's syndrome
Primary Sjögren's syndrome (SS) shares many features with systemic lupus erythematosus (SLE). Here we investigated the association of the three major polymorphisms in IRF5 and STAT4 found to be associated with SLE, in patients from Sweden and Norway with primary SS. These polymorphisms are a 5-bp CGGGG indel in the promoter of IRF5 , the single nucleotide polymorphism (SNP) rs10488631 downstream of IRF5 and the STAT4 SNP rs7582694, which tags the major risk haplotype of STAT4. We observed strong signals for association between all three polymorphisms and primary SS, with odds ratios (ORs) >1.4 and P -values <0.01. We also found a strong additive effect of the three risk alleles of IRF5 and STAT4 with an overall significance between the number of risk alleles and primary SS of P =2.5 × 10 −9 . The OR for primary SS increased in an additive manner, with an average increase in OR of 1.78. For carriers of two risk alleles, the OR for primary SS is 1.43, whereas carriers of five risk alleles have an OR of 6.78. IRF5 and STAT4 are components of the type I IFN system, and our findings emphasize the importance of this system in the etiopathogenesis of primary SS.
Development of PCR-based SNP markers for rice blast resistance genes at the Piz locus
We assessed the utility of single-nucleotide polymorphisms (SNPs) and small insertion/deletion polymorphisms (InDels) as DNA markers in genetic analysis and breeding of rice. Toward this end, we surveyed SNPs and InDels in the chromosomal region containing the Piz and Piz-t rice blast resistance genes and developed PCR-based markers for typing the SNPs. Analysis of sequences from a blast-susceptible Japanese cultivar and two cultivars each containing one of these genes revealed that SNPs are abundant in the Piz and Piz-t regions (on average, one SNP every 248 bp), but the number of InDels was much lower. The dense distribution of SNPs facilitated the generation of SNP markers in the vicinity of the genes. For typing these SNPs, we used a modified allele-specific PCR method. Of the 49 candidate allele-specific markers, 33 unambiguously and reproducibly discriminated between the two alleles. We used the markers for mapping the Piz and Piz-t genes and evaluating the size of DNA segments introgressed from the Piz donor cultivar in Japanese near-isogenic lines containing Piz. Our findings suggest that, because of its ability to generate numerous markers within a target region and its simplicity in assaying genotypes, SNP genotyping with allele-specific PCR is a valuable tool for gene mapping, map-based cloning, and marker-assisted selection in crops, especially rice.
Efficient Molecular Marker Design Using the MaizeGDB Mo17 SNPs and Indels Track
Positional cloning in maize (Zea mays) requires development of markers in the region of interest. We found that primers designed to amplify annotated insertion–deletion polymorphisms of seven base pairs or greater between B73 and Mo17 produce polymorphic markers at a 97% frequency with 49% of the products showing co-dominant fragment length polymorphisms. When the same polymorphisms are used to develop markers for B73 and W22 or Mo17 and W22 mapping populations, 22% and 31% of markers are co-dominant, respectively. There are 38,223 Indel polymorphisms that can be converted to markers providing high-density coverage throughout the maize genome. This strategy significantly increases the efficiency of marker development for fine-mapping in maize.
Development and Validation of SNP and InDel Markers for Pod-Shattering Tolerance in Soybean
Pod-shattering causes a significant yield loss in many soybean cultivars. Shattering-tolerant cultivars provide the most effective approach to minimizing this loss. We developed molecular markers for pod-shattering and validated them in soybeans with diverse genetic backgrounds. The genes Glyma.16g141200, Glyma.16g141500, and Glyma.16g076600, identified in our previous study by quantitative trait locus (QTL) mapping and whole-genome resequencing, were selected for marker development. The whole-genome resequencing of three parental lines (one shattering-tolerant and two shattering-susceptible) identified single nucleotide polymorphism (SNP) and/or insertion/deletion (InDel) regions within or near the selected genes. Two SNPs and one InDel were converted to Kompetitive Allele-Specific PCR (KASP) and InDel markers, respectively. The accuracy of the markers was examined in the two recombinant inbred line populations used for the QTL mapping, as well as the 120 varieties and elite lines, through allelic discrimination and phenotyping by the oven-drying method. Both types of markers successfully discriminated the pod shattering-tolerant and shattering-susceptible genotypes. The prediction accuracy, which was as high as 90.9% for the RILs and was 100% for the varieties and elite lines, also supported the accuracy and usefulness of these markers. Thus, the markers can be used effectively for genetic and genomic studies and the marker-assisted selection for pod-shattering tolerance in soybean.
Association between angiotensin-converting enzyme gene insertion/deletion polymorphism and cognition impairment in patients with schizophrenia
RationaleSeveral lines of evidence indicate that an insertion/deletion (I/D) polymorphism in the angiotensin-converting enzyme gene (ACE) gene may be involved in the pathogenesis of schizophrenia and cognitive impairment. However, the relationship between ACE I/D polymorphism and cognitive impairment in patients with schizophrenia remains unclear.ObjectivesThe aim of this study was to examine whether ACE gene I/D polymorphism contributed to cognitive impairment in Chinese patients with schizophrenia, and whether the association between clinical symptoms and cognitive impairment depended on different ACE genotypes.MethodsThe ACE I/D polymorphism was genotyped in 928 schizophrenia patients and 325 healthy controls using a case–control design. The severity of psychopathological symptoms was assessed using the Positive and Negative Syndrome Scale (PANSS). Cognitive functioning was assessed by the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS).ResultsThere were significant differences in genotype and allele frequencies of the ACE I/D polymorphism between patients and healthy controls (both P < 0.01). After controlling for demographic characteristics, patients who are homozygous carriers of D and I performed worse on the RBANS attention index than heterozygous carriers (P = 0.009). In addition, attention index score was negatively correlated with PANSS negative symptom score in patients of all genotypes (all P < 0.05), and positively correlated with positive symptom score only in the I/I genotype (P = 0.005).ConclusionsThese findings suggest that ACE I/D gene variants play a role in susceptibility to schizophrenia, specific cognitive impairment and the association between clinical symptoms and cognitive impairment in schizophrenia patients.
Ancestry analysis using a self-developed 56 AIM-InDel loci and machine learning methods
Insertion/deletion (InDel) polymorphisms can be used as one of the ancestry-informative markers in ancestry analysis. In this study, a self-developed panel consisting of 56 ancestry-informative InDels was used to investigate the genetic structures and genetic relationships between Chinese Inner Mongolia Manchu group and 26 reference populations. The Inner Mongolia Manchu group was closely related in genetic background to East Asian populations, especially the Han Chinese in Beijing. Moreover, populations from northern and southern East Asia displayed obvious variations in ancestral components, suggesting the potential value of this panel in distinguishing the populations from northern and southern East Asia. Subsequently, four machine learning models were performed based on the 56 AIM-InDel loci to evaluate the performance of this panel in ancestry prediction. The random forest model presented better performance in ancestry prediction, with 91.87% and 99.73% accuracy for the five and three continental populations, respectively. The individuals of the Inner Mongolia Manchu group were assigned to the East Asian populations by the random forest model, and they exhibited closer genetic affinities with northern East Asian populations. Furthermore, the random forest model distinguished 87.18% of the Inner Mongolia Manchus from the East Asian populations, suggesting that the random forest model based on the 56 ancestry-informative InDels could be a potential tool for ancestry analysis. •The 56 AIM-InDels have the potential to differentiate populations in northern and southern East Asia.•The machine learning methods based on the 56 AIM-InDels could serve as an effective tool in ancestry prediction.•Manchu in Inner Mongolia share a closer genetic affinity with East Asians, particularly the Han Chinese in Beijing.
Performance of a self-developed panel for biogeographic ancestry inference and dissection of the genetic background of three Tibetan groups
Background In this study, we used a panel consisting of 56 autosomal ancestry-informative insertion/deletions (AIM-InDels) for biogeographic ancestry inference, three Y-InDels, and one Amelogenin gene, and verified its performance in Gannan Tibetan, Qinghai Tibetan, and Tibet Tibetan groups. Meanwhile, we analyzed the genetic structures of these three Tibetan groups. Results The results showed that 56 AIM-InDels performed better at classifying African and East Asian individuals without noisy labels compared with other intercontinental populations. By the addition of noisy labels, the SVM model was robust when the proportion of noisy labels was small. Furthermore, the African and East Asian populations showed better performance than the other three intercontinental populations. And the 56 AIM-InDels could be used for individual identification and full sibling identification of three Tibetan groups. Population genetic analysis of three Tibetan groups showed that their genetic structures were similar to East Asian populations. Conclusions This panel can not only be effectively used for biogeographic ancestry inference in African and East Asian populations but also provide insights into the genetic structures of three Tibetan groups.
Development of a novel five dye insertion/deletion (INDEL) panel for ancestry determination
The use of genetic markers, specifically Short Tandem Repeats (STRs), has been a valuable tool for identifying persons of interest. However, the ability to analyze additional markers including Single Nucleotide Polymorphisms (SNPs) and Insertion/Deletion (INDELs) polymorphisms allows laboratories to explore other investigative leads. INDELs were chosen in this study because large panels can be differentiated by size, allowing them to be genotyped by capillary electrophoresis. Moreover, these markers do not produce stutter and are smaller in size than STRs, facilitating the recovery of genetic information from degraded samples. The INDEL Ancestry Informative Markers (AIMs) in this study were selected from the 1000 Genomes Project based on a fixation index (FST) greater than 0.50, high allele frequency divergence, and genetic distance. A total of 25 INDEL-AIMs were optimized and validated according to SWGDAM guidelines in a five-dye multiplex. To validate the panel, genotyping was performed on 155 unrelated individuals from four ancestral groups (Caucasian, African, Hispanic, and East Asian). Bayesian clustering and principal component analysis (PCA) were performed revealing clear separation among three groups, with some observed overlap within the Hispanic group. Additionally, the PCA results were compared against a training set of 793 samples from the 1000 Genomes Project, demonstrating consistent results. Validation studies showed the assay to be reproducible, tolerant to common inhibitors, robust with challenging casework type samples, and sensitive down to 125 pg. In conclusion, our results demonstrated the robustness and effectiveness of a 25 loci INDEL system for ancestry inference of four ancestries commonly found in the United States.
Estimating Asian Contribution to the Brazilian Population: A New Application of a Validated Set of 61 Ancestry Informative Markers
Estimates of different ancestral proportions in admixed populations are very important in population genetics studies, especially for the detection of population substructure effects in studies of case-control associations. Brazil is one of the most heterogeneous countries in the world, both from a socio-cultural and a genetic point of view. In this work, we investigated a previously developed set of 61 ancestry informative markers (AIM), aiming to estimate the proportions of four different ancestral groups (African, European, Native American and Asian) in Brazilian populations. To the best of our knowledge, this is the first study to use a set of AIM to investigate the genetic contribution of all four main parental populations to the Brazilian population, including Asian contribution. All selected markers were genotyped through multiplex PCR and capillary electrophoresis. The set was able to successfully differentiate the four ancestral populations (represented by 939 individuals) and identify their genetic contributions to the Brazilian population. In addition, it was used to estimate individual interethnic admixture of 1050 individuals from the Southeast region of Brazil and it showed that these individuals present a higher European ancestry contribution, followed by African, Asian and Native American ancestry contributions. Therefore, the 61 AIM set has proved to be a valuable tool to estimate individual and global ancestry proportions in populations mainly formed by these four groups. Our findings highlight the importance of using sets of AIM to evaluate population substructure in studies carried in admixed populations, in order to avoid misinterpretation of results.
Neuregulin 2 Is a Candidate Gene for Autism Spectrum Disorder
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with heterogeneous and complex genetic underpinnings. Our previous microarray gene expression profiling identified significantly different neuregulin-2 gene (NRG2) expression between ASD patients and controls. Thus, we aimed to clarify whether NRG2 is a candidate gene associated with ASD. The study consisted of two stages. First, we used real-time quantitative PCR in 20 ASDs and 20 controls to confirm the microarray gene expression profiling results. The average NRG2 gene expression level in patients with ASD (3.23 ± 2.80) was significantly lower than that in the controls (9.27 ± 4.78, p < 0.001). Next, we conducted resequencing of all the exons of NRG2 in a sample of 349 individuals with ASD, aiming to identify variants of the NRG2 associated with ASD. We identified three variants, including two single nucleotide variants (SNVs), IVS3 + 13A > G (rs889022) and IVS10 + 32T > A (rs182642591), and one small deletion at exon 11 of NRG2 (delGCCCGG, rs933769137). Using data from the Taiwan Biobank as the controls, we found no significant differences in allele frequencies of rs889022 and rs182642591 between two groups. However, there is a significant difference in the genotype and allele frequency distribution of rs933769137 between ASDs and controls (p < 0.0001). The small deletion is located in the EGF-like domain at the C-terminal of the NRG2 precursor protein. Our findings suggest that NRG2 might be a susceptibility gene for ASD.