Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
3,493 result(s) for "intake rate"
Sort by:
Sheep and goat feeding behavior profile in grazing systems
 Feeding behavior analysis provides information about the relationships between animals and pastures. Therefore, this review aims to describe some aspects of the feeding behavior profiles of both sheep and goats in grazing systems. The structure of the pasture is a key factor in the feeding behavior of grazing animals. The amount of feed consumed in a given period of time is affected by the number of meals, duration and velocity of swallowing, changes in grazing time, bite rate, bite weight, and quality of ingested forage. The different phenological stages of forage also influence the animals’ strategies to optimize their intake, which consequently changes their behavioral activities. Sheep and goats tend to be more selective than cattle, and young animals are more selective than older animals; this selectivity characteristic is one of the most important aspects to be observed in pasture management. According to the degree of selectivity, the animals will intake forages of higher or lower nutritive quality. In addition, the intensity and distribution of their daily activities (grazing, ruminating, and resting) are influenced by several factors, such as the availability and nutritive value of the pasture, its management, the animal activity in the group, and the predominant climatic conditions of the region.
Mechanisms and implications of a type IV functional response for short-term intake rate of dry matter in large mammalian herbivores
1. The functional response (i.e. the relationship between consumers' intake rate and resource density) is central in plant-herbivore interactions. Its shape and the biological processes leading to it have significant implications for both foraging theory and ecology of grazing systems. 2. A type IV functional response (i.e. dome-shaped relationship) of short-term intake rate of dry matter (intake while grazing) has rarely been reported for large herbivores and the conditions that can lead to it are poorly understood. 3. We report a type IV functional response observed in heifers grazing monocultures of Cynodon sp. and Avena strigosa. The mechanisms and consequences of this type of functional response for grazed system dynamics are discussed. 4. Intake rate was higher at intermediate than at short or tall sward heights in both grass species. The type IV functional response resulted from changes in bite mass instead of a longer time needed to encounter and process bites. Thus, the decrease of intake rate of dry matter in tall swards is not explained by a shift from process 3 (potential bites are concentrated and apparent) to process 2 (potential bites are apparent but dispersed, Spalinger & Hobbs 1992). Bite mass was smaller in tall than greater proportion of stem and sheath acting as a physical barrier to bite formation.5. It is generally accepted that potential bites are abundant and apparent in most grassland and meadow systems, as they were in the present experiments. Therefore, a type IV response of intake rate not directly related to digestive constraints may determine the dynamics of intake and defoliation under a much larger set of conditions than previously thought. These results have implications for foraging theory and stability of grazing systems. For example, if animals prefer patches of intermediate stature that yield the highest intake rate, grazing should lead to the widely observed bimodal distribution of plant mass per unit area, even when tall patches are not of significantly lower digestive quality than the pasture average.
What, how, and how much do herbivores eat? The Continuous Bite Monitoring method for assessing forage intake of grazing animals
Determining herbage intake is pivotal for studies on grazing ecology. Direct observation of animals allows describing the interactions of animals with the pastoral environment along the complex grazing process. The objectives of the study were to evaluate the reliability of the continuous bite monitoring (CBM) method in determining herbage intake in grazing sheep compared to the standard double‐weighing technique method during 45‐min feeding bouts; evaluate the degree of agreement between the two techniques; and to test the effect of different potential sources of variation on the reliability of the CBM. The CBM method has been used to describe the intake behavior of grazing herbivores. In this study, we evaluated a new approach to this method, that is, whether it is a good proxy for determining the intake of grazing animals. Three experiments with grazing sheep were carried out in which we tested for different sources of variations, such as the number of observers, level of detail of bite coding grid, forage species, forage allowance, sward surface height heterogeneity, experiment site, and animal weight, to determine the short‐term intake rate (45 min). Observer (Pexp1 = 0.018, Pexp2 = 0.078, and Pexp3 = 0.006), sward surface height (Pexp2 < 0.001), total number of bites observed per grazing session (Pexp2 < 0.001 and Pexp3 < 0.001), and sward depletion (Pexp3 < 0.001) were found to affect the absolute error of intake estimation. The results showed a high correlation and agreement between the two methods in the three experiments, although intake was overestimation by CBM on experiments 2 and 3 (181.38 and 214.24 units, respectively). This outcome indicates the potential of CBM to determining forage intake with the benefit of a greater level of detail on foraging patterns and components of the diet. Furthermore, direct observation is not invasive nor disrupts natural animal behavior. We showed an agreement between the Continuous bite Monitoring method and Double‐Weighing Technique method; Continuous Bite Monitoring method is a good proxy for determining the intake of grazing animals; Direct observation is not invasive nor disrupts natural animal behavior.
Increased searching and handling effort in tall swards lead to a Type IV functional response in small grazing herbivores
Understanding the functional response of species is important in comprehending the species' population dynamics and the functioning of multi-species assemblages. A Type II functional response, where instantaneous intake rate increases asymptotically with sward biomass, is thought to be common in grazers. However, at tall, dense swards, food intake might decline due to mechanical limitations or if animals selectively forage on the most nutritious parts of a sward, leading to a Type IV functional response, especially for smaller herbivores. We tested the predictions that bite mass, cropping time, swallowing time and searching time increase, and bite rate decreases with increasing grass biomass for different-sized Canada geese (Branta canadensis) foraging on grass swards. Bite mass indeed showed an increasing asymptotic relationship with grass biomass. At high biomass, difficulties in handling long leaves and in locating bites were responsible for increasing cropping, swallowing, and searching times. Constant bite mass and decreasing bite rate caused the intake rate to decrease at high sward biomass after reaching an optimum, leading to a Type IV functional response. Grazer body mass affected maximum bite mass and intake rate, but did not change the shape of the functional response. As grass nutrient contents are usually highest in short swards, this Type IV functional response in geese leads to an intake rate that is maximised in these swards. The lower grass biomass at which intake rate was maximised allows resource partitioning between differentsized grazers. We argue that this Type IV functional response is of more importance than previously thought.
State-dependent foraging by caribou with different nutritional requirements
Foraging by animals is hypothesized to be state-dependent, that is, varying with physiological condition of individuals. State often is defined by energy reserves, but state also can reflect differences in nutritional requirements (e.g., for reproduction, lactation, growth, etc.). Testing hypotheses about state-dependent foraging in ungulates is difficult because fine-scale data needed to evaluate these hypotheses generally are lacking. To evaluate whether foraging by caribou (Rangifer tarandus) was state-dependent, we compared bite and intake rates, travel rates, dietary quality, forage selection, daily foraging time, and foraging strategies of caribou with three levels of nutritional requirements (lactating adults, nonlactating adults, subadults 1–2 years old). Only daily foraging times and daily nutrient intakes differed among nutritional classes of caribou. Lactating caribou foraged longer per day than nonlactating caribou—a difference that was greatest at the highest rates of intake, but which persisted even when intake was below requirements. Further, at sites where caribou achieved high rates of intake, caribou in each nutritional class continued foraging even after satisfying daily nutritional requirements, which was consistent with a foraging strategy to maximize energy intake. Foraging time by caribou was partially state-dependent, highlighting the importance of accounting for physiological state in studies of animal behavior. Fine-scale foraging behaviors may influence larger-scale behavioral strategies, with potential implications for conservation and management.
Speed limits: the effects of industrial food processing and food texture on daily energy intake and eating behaviour in healthy adults
PurposeFrequent consumption of industrially processed foods has been associated with obesity. However, it is unknown what drives this association. Food textures of industrially processed foods that stimulate energy overconsumption may be an important driver of this association. Therefore, this study aimed to determine the independent and combined effects of food texture and level of industrial food processing (based on the NOVA classification) on daily energy intake and eating behaviour.MethodsEighteen healthy adults (F/M: 11/7, 23 ± 3 y, 22.1 ± 2.0 kg/m2) participated in a 2 × 2 randomized crossover dietary intervention with four conditions (total of 288 meals): hard unprocessed, hard (ultra-)processed, soft unprocessed and soft (ultra-)processed. Daily diets were offered ad libitum and were equal in energy density (1 kcal/g). Food Intake (g) was measured by pre- and post-consumption weighing of the plates. Eating behaviour parameters were derived from video annotations.ResultsDaily energy intake and food intake were, respectively, 33% (571 ± 135 kcal) and 14% (247 ± 146 g) lower in the hard compared to the soft conditions (main texture p < 0.001). Energy intake was lower in both hard conditions compared to the (ultra)processed soft condition (Tukey p < 0.04). Eating rate (g/min) was on average 85% slower (P < 0.001) in the hard compared to the soft conditions (p < 0.001). Level of processing did not affect food intake.ConclusionConsumption of hard-textured foods reduces daily energy intake of (ultra-) processed foods. This preliminary investigation shows that there is great variability in food properties that affect energy and food intake beyond industrial food processing. However, findings should be interpreted with precaution considering the limited sample size of this trial. Future classification systems for public health messaging should include energy intake rate to help reduce overconsumption.Clinical trial registryNCT04280146, https://www.clinicaltrials.gov, February 21st 2020.
Assessing Sector Performance and Inequality in Education
This book gathers in one volume all the information needed to use ADePT Edu, the software platform created by the World Bank for the reporting and analysis of education indicators and education inequality. It includes a primer on education data availability, an operating manual for the software, a technical explanation of all the education indicators generated, and an overview of global education inequality using ADePT Edu. The World Bank developed ADePT Edu to fill the need for a user-friendly program designed to give everyone the ability to organize and analyze education data from households. ADePT Edu can be used with any household survey with the aid of its user friendly interface, generating education tables and graphics that comply with international standards for performance indicators. Because this volume is a compendium its chapters can be consulted independently of each other, depending on the need of users.
Why geese benefit from the transition from natural vegetation to agriculture
The energy and nutrient content of most agricultural crops are as good as or superior to natural foods for wild geese and they tend to be available in agricultural landscapes in far greater abundance. Artificial grasslands (fertilised native swards and intensively managed reseeds) offer far superior quality forage and higher intake rates than seminatural or natural grasslands. The availability of such abundant artificial food explains the abandonment of traditional habitats for farmland by geese over the last 50-100 years and favours no reduction in current levels of exploitation of agriculture. Continental scale spatial and temporal shifts among geese undergoing spring fattening confirm their flexibility to respond rapidly to broadscale changes in agriculture. These dramatic changes support the hypothesis that use of agricultural landscapes has contributed to elevated reproductive success and that European and North American farmland currently provides unrestricted winter carrying capacity for goose populations formerly limited by wetlands habitats prior to the agrarian revolution of the last century.
Combined Impact of a Faster Self-Reported Eating Rate and Higher Dietary Energy Intake Rate on Energy Intake and Adiposity
Eating more quickly and consuming foods with a higher energy-intake-rate (EIR: kcal/min) is associated with greater energy intake and adiposity. However, it remains unclear whether individuals who eat more quickly are more likely to consume foods with higher EIR. We investigated the overlap between self-reported eating rate (SRER) and the consumption of higher EIR foods, and their combined impact on daily energy intake and adiposity in a population-based Asian cohort (n = 7011; 21–75y). Food consumption was assessed using a validated Food Frequency Questionnaire. Moderated regression with simple slope analysis was conducted to evaluate whether SRER modified the association between dietary EIR and total dietary energy intakes. Faster eaters consumed a significantly higher proportion of energy from higher EIR foods among overweight individuals, but not among normal-weight individuals. Associations between dietary EIR and total energy intake were stronger among medium (β = 15.04, 95%CI: 13.00–17.08) and fast (β = 15.69, 95%CI: 12.61–18.78) eaters, compared with slower eaters (β = 9.89, 95%CI: 5.11–14.67; p-interaction = 0.032). Higher dietary EIR also tended to be more strongly associated with BMI in fast eaters (β = 0.025, 95%CI: 0.011–0.038) than in slow eaters (β = 0.017, 95%CI: −0.007–0.040). These findings suggest that the combination of eating more quickly and selecting a greater proportion of energy from higher EIR foods (i.e., softly textured, energy dense), promoted higher dietary energy intakes and adiposity.
When can cropping rate compensate for increased vigilance?
Abstract Herbivores use vigilance to reduce predation risk and interact socially, yet it imposes a foraging efficiency cost. As individuals spend more time with their head up being vigilant, time available to search for and ingest food decreases. We explored whether ungulates can strategically modify behaviours to compensate for vigilance costs via increased cropping rate when food searching time was near-zero and bite sizes were small. We compared the proportion of time individuals had their head up to their cropping rate (bites/observation length) in 271 observations of Roosevelt elk (Cervus elaphus roosevelti). Using a linear mixed-effect model, we estimated the head up–cropping rate relationship and found that elk cropping rate was constant across varying lengths of time spent with their head up, indicating no vigilance compensation occurred via increased cropping rate. We discuss settings when cropping rate compensation is expected and other behaviours that might mitigate vigilance costs.