Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
34,596 result(s) for "intelligent systems"
Sort by:
Trends, Research Issues and Applications of Artificial Intelligence in Language Education
Artificial Intelligence (AI) plays an increasingly important role in language education; however, the trends, research issues, and applications of AI in language learning remain largely under-investigated. Accordingly, the present paper, using bibliometric analysis, investigates these issues via a review of 516 papers published between 2000 and 2019, focusing on how AI was integrated into language education. Findings revealed that the frequency of studies on AI-enhanced language education increased over the period. The USA and Arizona State University were the most active country and institution, respectively. The 10 most popular topics were: (1) automated writing evaluation; (2) intelligent tutoring systems (ITS) for reading and writing; (3) automated error detection; (4) computer-mediated communication; (5) personalized systems for language learning; (6) natural language and vocabulary learning; (7) web resources and web-based systems for language learning; (8) ITS for writing in English for specific purposes; (9) intelligent tutoring and assessment systems for pronunciation and speech training; and (10) affective states and emotions. The results also indicated that AI was frequently used to assist students in learning writing, reading, vocabulary, grammar, speaking, and listening. Natural language processing, automated speech recognition, and learner profiling were commonly applied to develop automated writing evaluation, personalized learning, and intelligent tutoring systems.
Understanding secondary students’ continuance intention to adopt AI-powered intelligent tutoring system for English learning
Previous studies have demonstrated the effectiveness of intelligent tutoring systems (ITS) in facilitating English learning. However, no empirical research has been conducted on secondary students’ intention to use ITSs in the language domain. This study proposes an extended technology acceptance model (TAM) to predict secondary students’ continuance intention to use and actual use of ITSs for English learning. The model included fifteen hypotheses that were tested with 528 senior secondary students in China. The results of structural equation modeling showed that (1) perceived usefulness and price value had direct positive impacts on continuance intention; (2) perceived ease of use was not directly associated with students’ intention but indirectly influenced intention via perceived usefulness; (3) through the mediation of perceptions, learning goal orientation and facilitating conditions were positively associated with continuance intention; (4) perceived enjoyment positively predicted and anxiety negatively predicted students’ intention to use ITSs; and (5) students’ continuance intention to use ITSs was significantly positively associated with their actual use of ITSs for English learning. The model showed strong explanatory power and might be implemented in future research. This study contributes to the theory and practice of ITSs in K-12 education.
Recent Advances in Flexible Tactile Sensors for Intelligent Systems
Tactile sensors are an important medium for artificial intelligence systems to perceive their external environment. With the rapid development of smart robots, wearable devices, and human-computer interaction interfaces, flexible tactile sensing has attracted extensive attention. An overview of the recent development in high-performance tactile sensors used for smart systems is introduced. The main transduction mechanisms of flexible tactile sensors including piezoresistive, capacitive, piezoelectric, and triboelectric sensors are discussed in detail. The development status of flexible tactile sensors with high resolution, high sensitive, self-powered, and visual capabilities are focused on. Then, for intelligent systems, the wide application prospects of flexible tactile sensors in the fields of wearable electronics, intelligent robots, human-computer interaction interfaces, and implantable electronics are systematically discussed. Finally, the future prospects of flexible tactile sensors for intelligent systems are proposed.
The effect of transparency and trust on intelligent system acceptance: Evidence from a user-based study
Contemporary decision support systems are increasingly relying on artificial intelligence technology such as machine learning algorithms to form intelligent systems. These systems have human-like decision capacity for selected applications based on a decision rationale which cannot be looked-up conveniently and constitutes a black box. As a consequence, acceptance by end-users remains somewhat hesitant. While lacking transparency has been said to hinder trust and enforce aversion towards these systems, studies that connect user trust to transparency and subsequently acceptance are scarce. In response, our research is concerned with the development of a theoretical model that explains end-user acceptance of intelligent systems. We utilize the unified theory of acceptance and use in information technology as well as explanation theory and related theories on initial trust and user trust in information systems. The proposed model is tested in an industrial maintenance workplace scenario using maintenance experts as participants to represent the user group. Results show that acceptance is performance-driven at first sight. However, transparency plays an important indirect role in regulating trust and the perception of performance.
Examining the applications of intelligent tutoring systems in real educational contexts: A systematic literature review from the social experiment perspective
Intelligent Tutoring Systems (ITSs) have a great potential to effectively transform teaching and learning. As more efforts have been put on designing and developing ITSs and integrating them within learning and instruction, mixed types of results about the effectiveness of ITS have been reported. Therefore, it is necessary to investigate how ITSs work in real and natural educational contexts and the associated challenges of ITS application and evaluation. Through a systematic literature review method, this study analyzed 40 qualified studies that applied social experiment methods to examine the effectiveness of ITS during 2011–2022. The obtained results highlighted a complicated landscape regarding the effectiveness of ITS in real educational contexts. Specifically, there was an “intelligent” regional gap regarding the distribution of countries where ITS studies using social experiment methods were conducted. Compared to learning performance, relatively less attention was paid to investigating the impact of ITS on non-cognitive factors, process-oriented factors, and social outcomes, calling for more research in this regard. Considering the complexities and challenges existing in real educational fields, there was a lack of scientific rigor in terms of experimental design and data analysis in some of the studies. Based on these findings, suggestions for future study and implications were proposed.