Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4
result(s) for
"interaction-web connectance"
Sort by:
Geographic Patterns in Plant-Pollinator Mutualistic Networks
2002
Recent reviews of plant-pollinator mutualistic networks showed that generalization is a common pattern in this type of interaction. Here we examine the ecological correlates of generalization patterns in plant-pollinator networks, especially how interaction patterns covary with latitude, elevation, and insularity. We review the few published analyses of whole networks and include unpublished material, analyzing 29 complete plant-pollinator networks that encompass arctic, alpine, temperate, Mediterranean, and subtropical-tropical areas. The number of interactions observed (I) was a linear function of network size (M) the maximum number of interactions: In I = 0.575 + 0.61 In M; R2 = 0.946. The connectance (C), the fraction of observed interactions relative to the total possible, decreased exponentially with species richness, the sum of animal and plant species in each community (A + P): C = 13.83 exp[ -0.003(A + P)]. After controlling for species richness, the residual connectance was significantly lower in highland (>1500 m elevation) than in lowland networks and differed marginally among biogeographic regions, with both alpine and tropical networks showing a trend for lower residual connectance. The two Mediterranean networks showed the highest residual connectance. After correcting for variation in network size, plant species were shown to be more generalized at higher latitude and lowland habitats, but showed increased specialization on islands. Oceanic island networks showed an impoverishment of potential animal pollinators (lower ratio of animal to plant species, A : P, compared to mainland networks) associated with this trend of increased specialization. Plants, but not their flower-visiting animals, supported the often-repeated statements about higher specificity in the tropics than at higher latitudes. The pattern of interaction build-up as diversity increases in pollination networks does not differ appreciably from other mutualisms, such as plant-seed disperser networks or more complex food webs.
Journal Article
Generalization in Pollination Systems, and Why it Matters
by
Ollerton, Jeff
,
Price, Mary V.
,
Waser, Nikolas M.
in
Adaptation (Biology)
,
Angiospermae
,
Animal and plant ecology
1996
One view of pollination systems is that they tend toward specialization. This view is implicit in many discussions of angiosperm evolution and plant-pollinator coevolution and in the long-standing concept of \"pollination syndromes.\" But actual pollination systems often are more generalized and dynamic than these traditions might suggest. To illustrate the range of specialization and generalization in pollinators' use of plants and vice versa, we draw on studies of two floras in the United States, and of members of several plant families and solitary bee genera. We also summarize a recent study of one local flora which suggests that, although the colors of flowers are aggregated in \"phenotype space,\" there is no strong association with pollinator types as pollination syndromes would predict. That moderate to substantial generalization often occurs is not surprising on theoretical grounds. Plant generalization is predicted by a simple model as long as temporal and spatial variance in pollinator quality is appreciable, different pollinator species do not fluctuate in unison, and they are similar in their pollination effectiveness. Pollinator generalization is predicted when floral rewards are similar across plant species, travel is costly, constraints of behavior and morphology are minor, and/or pollinator lifespan is long relative to flowering of individual plant species. Recognizing that pollination systems often are generalized has important implications. In ecological predictions of plant reproductive success and population dynamics it is useful to widen the focus beyond flower visitors within the \"correct\" pollination syndrome, and to recognize temporal and spatial fluidity of interactions. Behavioral studies of pollinator foraging choices and information-processing abilities will benefit from understanding the selective advantages of generalization. In studies of floral adaptation, microevolution, and plant speciation one should recognize that selection and gene flow vary in time and space and that the contribution of pollinators to reproductive isolation of plant species may be overstated. In conservation biology, generalized pollination systems imply resilience to linked extinctions, but also the possibility for introduced generalists to displace natives with a net loss of diversity.
Journal Article
Complexity of multitrophic interactions in a grassland ecosystem depends on plant species diversity
2012
1. We studied the theoretical prediction that a loss of plant species richness has a strong impact on community interactions among all trophic levels and tested whether decreased plant species diversity results in a less complex structure and reduced interactions in ecological networks. 2. Using plant species-specific biomass and arthropod abundance data from experimental grassland plots (Jena Experiment), we constructed multitrophic functional group interaction webs to compare communities based on 4 and 16 plant species. 427 insect and spider species were classified into 13 functional groups. These functional groups represent the nodes of ecological networks. Direct and indirect interactions among them were assessed using partial Mantel tests. Interaction web complexity was quantified using three measures of network structure: connectance, interaction diversity and interaction strength. 3. Compared with high plant diversity plots, interaction webs based on low plant diversity plots showed reduced complexity in terms of total connectance, interaction diversity and mean interaction strength. Plant diversity effects obviously cascade up the food web and modify interactions across all trophic levels. The strongest effects occurred in interactions between adjacent trophic levels (i. e. predominantly trophic interactions), while significant interactions among plant and carnivore functional groups, as well as horizontal interactions (i. e. interactions between functional groups of the same trophic level), showed rather inconsistent responses and were generally rarer. 4. Reduced interaction diversity has the potential to decrease and destabilize ecosystem processes. Therefore, we conclude that the loss of basal producer species leads to more simple structured, less and more loosely connected species assemblages, which in turn are very likely to decrease ecosystem functioning, community robustness and tolerance to disturbance. Our results suggest that the functioning of the entire ecological community is critically linked to the diversity of its component plants species.
Journal Article
Indirect Effects in Marine Rocky Intertidal Interaction Webs: Patterns and Importance
by
Menge, Bruce A.
in
Animal and plant ecology
,
Animal, plant and microbial ecology
,
Biological and medical sciences
1995
To determine the patterns of occurrence and importance of indirect effects relative to direct effects in natural communities, I analyzed experimentally based studies from 23 rocky intertidal habitats. The vehicle of analysis was the construction of interaction webs, or the subset of species in food webs involved in strong interactions. The analysis focused on indirect effects involving changes in abundance, or interaction chains, since little information was available on other types of indirect effects (behavioral, chemical response, environmental). As expected, number of direct (= strong) interactions, indirect effects, interaction sequences producing indirect effects, and types of indirect effects (e.g., keystone predation, apparent competition, etc.) all increased with web species richness. Less expected, when these measures were adjusted to a per species basis, positive relationships with species richness were still observed for all measures but the number of types. In other words, with increasing web diversity, each species interacted strongly with more species, was involved in more indirect effects, and was part of more interaction pathways. The analysis identified 83 subtypes of indirect effect, including the seven previously identified types. Many of the 76 additional types could be reclassified into the seven types if the original definitions of these @'classic@' types were expanded to include interactions having similar effects but differing in the specific mechanism (e.g., both interference competition and inhibition of recruitment [preemption] have negative effects involving a spatial resource). Two new types of indirect effect, termed @'apparent predation@' and @'indirect defense@' were also identified, producing a total of 9 general types of indirect effect divided among 565 specific indirect effects. Of these, keystone predation (35%) and apparent competition (25%) were most common and exploitation competition (2.8%) was least common in these webs. Two methods of analysis suggested that indirect effects accounted for @?40% of the change in community structure resulting from manipulations, with a range of 24-61%. The proportion of change due to indirect effects was constant with web species richness, indicating that strong direct interactions and indirect effects produce roughly the same level of alteration of community structure regardless of the level of web complexity. Several potential artifacts and biases were evaluated. Most importantly, neither variation in level of taxonomic resolution nor intensity of experimentation varied significantly with web size (species richness). Despite a bias toward manipulation of consumers over manipulation of basal species, some predator-initiated indirect effect types were scarce while some basal species-initiated types were common. While the frequency of exploitation competition may have been underestimated, it is unlikely that the frequency of this indirect effect would change dramatically: changes due to this effect should have been detected in many of the studies and reported; and the most intensively studied individual webs did not report frequencies differing much from the average. This analysis suggests investigators effectively identified and first manipulated those species responsible for most indirect effects and that more experiments added decreasing numbers of indirect effects. Moreover, the frequencies and importance of indirect effects may be more predictable than expected on the basis of theory.
Journal Article