Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,244
result(s) for
"isotopic analysis"
Sort by:
Copper and tin isotopic analysis of ancient bronzes for archaeological investigation: development and validation of a suitable analytical methodology
by
Vanhaecke, Frank
,
Aramendía, Maite
,
Balliana, Eleonora
in
Analytical Chemistry
,
Anion exchange
,
ARCHAEOLOGY
2013
Although in many cases Pb isotopic analysis can be relied on for provenance determination of ancient bronzes, sometimes the use of “non-traditional” isotopic systems, such as those of Cu and Sn, is required. The work reported on in this paper aimed at revising the methodology for Cu and Sn isotope ratio measurements in archaeological bronzes via optimization of the analytical procedures in terms of sample pre-treatment, measurement protocol, precision, and analytical uncertainty. For Cu isotopic analysis, both Zn and Ni were investigated for their merit as internal standard (IS) relied on for mass bias correction. The use of Ni as IS seems to be the most robust approach as Ni is less prone to contamination, has a lower abundance in bronzes and an ionization potential similar to that of Cu, and provides slightly better reproducibility values when applied to NIST SRM 976 Cu isotopic reference material. The possibility of carrying out direct isotopic analysis without prior Cu isolation (with AG-MP-1 anion exchange resin) was investigated by analysis of CRM IARM 91D bronze reference material, synthetic solutions, and archaeological bronzes. Both procedures (Cu isolation/no Cu isolation) provide similar
δ
65
Cu results with similar uncertainty budgets in all cases (±0.02–0.04 per mil in delta units,
k
= 2,
n
= 4). Direct isotopic analysis of Cu therefore seems feasible, without evidence of spectral interference or matrix-induced effect on the extent of mass bias. For Sn, a separation protocol relying on TRU-Spec anion exchange resin was optimized, providing a recovery close to 100 % without on-column fractionation. Cu was recovered quantitatively together with the bronze matrix with this isolation protocol. Isotopic analysis of this Cu fraction provides
δ
65
Cu results similar to those obtained upon isolation using AG-MP-1 resin. This means that Cu and Sn isotopic analysis of bronze alloys can therefore be carried out after a single chromatographic separation using TRU-Spec resin. Tin isotopic analysis was performed relying on Sb as an internal standard used for mass bias correction. The reproducibility over a period of 1 month (
n
= 42) for the mass bias-corrected Sn isotope ratios is in the range of 0.06–0.16 per mil (2 s), for all the ratios monitored.
Journal Article
Trophic level influences larval Shortbelly Rockfish development
by
Fennie, H. William
,
Walsh, Kamran A.
,
Thompson, Andrew R.
in
adults
,
Amino acids
,
Body condition
2024
r Objective Early life success of fishes is considered one of the most important drivers of recruitment to adult populations, and elucidating the governing mechanisms is important for management efforts. Many hypotheses over the past century have been proposed to explain recruitment fluctuation, with the recently postulated Trophic Efficiency in Early Life (TEEL) hypothesis arguing that a shorter food chain length equals greater energy transfer efficiency from primary producers to larval fishes, thereby reducing early‐life mortality and ultimately leading to stronger recruitment. Under TEEL it would then be assumed that feeding low in the food chain would improve growth and body condition, as these are often shown to be associated with increased survival in larval fishes. The objective of this study was to test this aspect of the TEEL hypothesis by quantifying condition, growth, and trophic level of larval Shortbelly Rockfish Sebastes jordani collected by the California Cooperative Oceanic Fisheries Investigations program and archived at the Ichthyoplankton Collection. Methods The trophic level on larval Shortbelly Rockfish was assessed with compound‐specific isotopic analysis of amino acids. Their size at age and survival were estimated with otolith microstructure. Their diet was examined through stomach content analysis. Result Observations indicate that larvae consuming prey at a lower trophic level have greater body weight and exhibit faster growth rates. However, feeding at a lower trophic level did not influence body length. The ingested prey responsible for the lower trophic level within larval rockfish could not be determined. Conclusion Larval Shortbelly Rockfish consuming prey at a lower trophic level garnered greater body weight and exhibited faster growth rates and provides support for the TEEL hypothesis. However, further research is needed to identify the preferred prey(s) responsible for the more efficient energy transfer. Impact Statement Scientists have long sought to explain and predict the variability in adult fish population size. Here, we tested a recently proposed hypothesis and found larval Shortbelly Rockfish that fed on prey from lower trophic levels grew heavier and faster, likely as these prey confer more energy from phytoplankton to the larvae.
Journal Article
Symbiotic Functioning and Photosynthetic Rates Induced by Rhizobia Associated with Jack Bean (Canavalia ensiformis L.) Nodulation in Eswatini
2023
Improving the efficiency of the legume–rhizobia symbiosis in African soils for increased grain yield would require the use of highly effective strains capable of nodulating a wide range of legume plants. This study assessed the photosynthetic functioning, N2 fixation, relative symbiotic effectiveness (%RSE) and C assimilation of 22 jack bean (Canavalia ensiformis L.) microsymbionts in Eswatini soils as a first step to identifying superior isolates for inoculant production. The results showed variable nodule number, nodule dry matter, shoot biomass and photosynthetic rates among the strains tested under glasshouse conditions. Both symbiotic parameters and C accumulation differed among the test isolates at the shoot, root and whole-plant levels. Although 7 of the 22 jack bean isolates showed much greater relative symbiotic efficiency than the commercial Bradyrhizobium strain XS21, only one isolate (TUTCEeS2) was statistically superior to the inoculant strain, which indicates its potential for use in inoculant formulation after field testing. Furthermore, the isolates that recorded high %RSE elicited greater amounts of fixed N.
Journal Article
Paleogene Lithostratigraphy and Recognition of the Marine Incursion of the Proto-Paratethys Sea in the Fergana Basin, Uzbekistan
by
Anvarov, Otabek Ulugbek Ogli
,
Hisada, Ken-ichiro
,
Kuroda, Junichiro
in
Fergana Basin
,
isotopic analyses
,
marine incursion
2022
Lithostratigraphy and isotopes of Paleogene sequences consisting mainly of terrestrial clastics and limestone were examined in the northern Fergana Basin of Uzbekistan. The studied sections consisted of two facies: the lower sequence coarse-grained terrestrial clastics and the upper sequence limestone clastics characterized by limestone beds. The sulfur isotopic composition of the bivalve obtained from the lower sequence was relatively low, namely, 14.94–16.82‰, which is equivalent to the Early Cretaceous; however, it is possible that the isotopic composition differed from that obtained in open seawater due to the presence of terrestrial clastics and the freshwater effect. In contrast, the sulfur isotopic composition of limestone from the upper sequence was relatively high, namely, 19.37–21.19‰, thereby indicating that they were likely to originate from the Early to Middle Eocene. Furthermore, the strontium isotopic compositions of the lower and upper sequences were 0.707772–0.707875‰ and 0.707812–0.708063‰, respectively. These values are more similar to those of the Paleogene than the Cretaceous. Finally, lithostratigraphy and age determination allowed us to correlate the upper sequence with representative limestone from the fourth transgression of the proto-Paratethys Sea, whilst the limestone beds were deduced to be remnants of the Eocene marine incursion of the proto-Paratethys Sea.
Journal Article
Spatial and Seasonal Isotope Variability in Precipitation across China
2022
The spatial patterns of stable hydrogen and oxygen isotopes in precipitation (precipitation isoscapes) provide a geographic perspective to understand the atmospheric processes in modern environment and paleoclimate records. Here we compiled stable isotope data in modern precipitation at 223 sites across China and 48 in surrounding countries, and used regionalized fuzzy clustering to create monthly precipitation isoscapes for China (C-Isoscape). Based on regressions using spatial and climatic parameters for 12 months, the best-fitting equations were chosen for four climate clusters, and then the four layers were weighted using fuzzy membership. The moisture transportation path, controlled by the westerlies and the monsoon, results in different spatial and seasonal diversity of precipitation isotopes. Based on C-Isoscape, we determined a nationwide meteoric water line as δ²H = 7.4δ18O + 5.5 using least squares regression or δ²H = 8.0δ18O + 10.2 using precipitation weighted reduced major axis regression. Compared with previous global products, the C-Isoscape usually shows precipitation more enriched in 18O and ²H in summer and more depleted in winter for northwest China, while the C-Isoscape values are more enriched in heavy isotopes in most months for southwest China. The new monthly precipitation isoscapes provide an accurate and high-resolution mapping for Chinese precipitation isotopes, allowing for future intra-annual atmospheric process diagnostics using stable hydrogen and oxygen isotope in precipitation in the region.
Journal Article
‘Trophic’ and ‘source’ amino acids in trophic estimation
2017
Amino acid nitrogen isotopic analysis is a relatively new method for estimating trophic position. It uses the isotopic difference between an individual’s ‘trophic’ and ‘source’ amino acids to determine its trophic position. So far, there is no accepted explanation for the mechanism by which the isotopic signals in ‘trophic’ and ‘source’ amino acids arise. Yet without a metabolic understanding, the utility of nitrogen isotopic analyses as a method for probing trophic relations, at either bulk tissue or amino acid level, is limited. I draw on isotopic tracer studies of protein metabolism, together with a consideration of amino acid metabolic pathways, to suggest that the ‘trophic’/‘source’ groupings have a fundamental metabolic origin, to do with the cycling of amino-nitrogen between amino acids. ‘Trophic’ amino acids are those whose amino-nitrogens are interchangeable, part of a metabolic amino-nitrogen pool, and ‘source’ amino acids are those whose amino-nitrogens are not interchangeable with the metabolic pool. Nitrogen isotopic values of ‘trophic’ amino acids will reflect an averaged isotopic signal of all such dietary amino acids, offset by the integrated effect of isotopic fractionation from nitrogen cycling, and modulated by metabolic and physiological effects. Isotopic values of ‘source’ amino acids will be more closely linked to those of equivalent dietary amino acids, but also modulated by metabolism and physiology. The complexity of nitrogen cycling suggests that a single identifiable value for ‘trophic discrimination factors’ is unlikely to exist. Greater consideration of physiology and metabolism should help in better understanding observed patterns in nitrogen isotopic values.
Journal Article
Identifying groundwater characteristics and controlling factors in Jiaozhou Bay’s northern coastal region, China: a combined approach of multivariate statistics, isotope analysis, and field empirical investigations
2024
Explicit identification of hydrochemical processes and their controlling factors within groundwater systems is critical for the sustainable utilization of water resources in coastal urban areas. This study was undertaken in the North Coastal Region of Jiaozhou Bay (NCRJB), located in the eastern part of Shandong Province, China, an area grappling with significant issues of groundwater quality degradation and water scarcity. A total of 105 groundwater samples and 34 surface water samples, collected from 2020 to 2024, were analyzed and studied using various hydrogeological tools, multivariate statistical analyses, and water quality assessment methods. These include the Piper diagram, hydrochemical facies evolution diagram (HFE-D), Principal Components Analysis (PCA), correlation analysis, stable isotope analysis, Water Quality Index (WQI), and USSL diagrams. The results indicated that all surface water and pore groundwater samples were categorized as Na-Cl type, exhibiting high Total Dissolved Solids (TDS) and Electrical Conductivity (EC) values, characteristics that render them poor to unsuitable for drinking and irrigation purposes. The fracture groundwater is predominantly of the Ca-Na-Cl mixed type, with average suitability for irrigation and a limited proportion (22.5%) deemed suitable for drinking. Seawater intrusion, primarily through the surface water system, and the impact of human activities were identified as the predominant controlling factors con-tributing to the degradation of the local groundwater environment. Field empirical investigations further validated the results derived from hydrogeological assessments, multivariate statistical analyses, and isotopic approaches. The long-term shifts in hydrochemical properties, along with the latent threat of seawater intrusion, exhibit an upward trend during the dry season and show a certain degree of mitigation during the wet season. This study highlights that field investigations, in conjunction with hydrochemical tools, multivariate statistical analyses, and stable isotope analysis, can successfully furnish reliable insights into the predominant mechanisms governing regional groundwater evolution within the context of long-term and intricate envi-ronmental settings.
Journal Article
Omnivory in Bees
by
Chikaraishi, Yoshito
,
Takizawa, Yuko
,
Winn, Alice A.
in
Amino acids
,
Amino Acids - chemistry
,
Animal Nutritional Physiological Phenomena
2019
As pollen and nectar foragers, bees have long been considered strictly herbivorous. Their pollen provisions, however, are host to abundant microbial communities, which feed on the pollen before and/or while it is consumed by bee larvae. In the process, microbes convert pollen into a complex of plant and microbial components. Since microbes are analogous to metazoan consumers within trophic hierarchies, the pollen-eating microbes are, functionally, herbivores. When bee larvae consume a microbe-rich pollen complex, they ingest proteins from plant and microbial sources and thus should register as omnivores on the trophic \"ladder.\" We tested this hypothesis by examining the isotopic compositions of amino acids extracted from native bees collected in North America over multiple years. We measured bee trophic position across the six major bee families. Our findings indicate that bee trophic identity was consistently and significantly higher than that of strict herbivores, providing the first evidence that omnivory is ubiquitous among bee fauna. Such omnivory suggests that pollen-borne microbes represent an important protein source for larval bees, which introduces new questions as to the link between floral fungicide residues and bee development.
Journal Article
A Statistical Method for Generating Temporally Downscaled Geochemical Tracers in Precipitation
2021
Sampling intervals of precipitation geochemistry measurements are often coarser than those required by fine-scale hydrometeorological models. This study presents a statistical method to temporally downscale geochemical tracer signals in precipitation so that they can be used in high-resolution, tracer-enabled applications. In this method, we separated the deterministic component of the time series and the remaining daily stochastic component, which was approximated by a conditional multivariate Gaussian distribution. Specifically, statistics of the stochastic component could be explained from coarser data using a newly identified power-law decay function, which relates data aggregation intervals to changes in tracer concentration variance and correlations with precipitation amounts. These statistics were used within a copula framework to generate synthetic tracer values from the deterministic and stochastic time series components based on daily precipitation amounts. The method was evaluated at 27 sites located worldwide using daily precipitation isotope ratios, which were aggregated in time to provide low-resolution testing datasets with known daily values. At each site, the downscaling method was applied on weekly, biweekly, and monthly aggregated series to yield an ensemble of daily tracer realizations. Daily tracer concentrations downscaled from a biweekly series had average (±standard deviation) absolute errors of 1.69‰ (1.61‰) for δ²H and 0.23‰ (0.24‰) for δ18O relative to observations. The results suggest coarsely sampled precipitation tracers can be accurately downscaled to daily values. This method may be extended to other geochemical tracers in order to generate downscaled datasets needed to drive complex, fine-scale models of hydrometeorological processes.
Journal Article
A new carnivorous plant lineage (Triantha) with a unique sticky-inflorescence trap
by
Graham, Sean W.
,
Lin, Qianshi
,
Givnish, Thomas J.
in
Alismatales - physiology
,
Animal behavior
,
Animals
2021
Carnivorous plants consume animals for mineral nutrients that enhance growth and reproduction in nutrient-poor environments. Here, we report that Triantha occidentalis (Tofieldiaceae) represents a previously overlooked carnivorous lineage that captures insects on sticky inflorescences. Field experiments, isotopic data, and mixing models demonstrate significant N transfer from prey to Triantha, with an estimated 64% of leaf N obtained from prey capture in previous years, comparable to levels inferred for the cooccurring round-leaved sundew, a recognized carnivore. N obtained via carnivory is exported from the inflorescence and developing fruits and may ultimately be transferred to next year’s leaves. Glandular hairs on flowering stems secrete phosphatase, as seen in all carnivorous plants that directly digest prey. Triantha is unique among carnivorous plants in capturing prey solely with sticky traps adjacent to its flowers, contrary to theory. However, its glandular hairs capture only small insects, unlike the large bees and butterflies that act as pollinators, which may minimize the conflict between carnivory and pollination.
Journal Article