Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
52
result(s) for
"k /cl− cotransporter 2"
Sort by:
Collection, storage, preservation, and normalization of human urinary exosomes for biomarker discovery
2006
Urinary exosomes containing apical membrane and intracellular fluid are normally secreted into the urine from all nephron segments, and may carry protein markers of renal dysfunction and structural injury. We studied methods for collection, storage, and preservation of urinary exosomal proteins. We collected urine from healthy volunteers, added protease inhibitors, and stored urine samples at 4, -20, and -80°C for 1 week or 7 months. Samples were thawed with and without extensive vortexing, and three fractions were isolated: urinary sediment, supernatant, and exosome fraction. Protein concentration, electrophoresis patterns, and abundance of seven exosome-associated proteins were measured. Exosome-associated proteins were not detected in sediment or supernatant fractions. Protease inhibitors prevented degradation of exosome-associated proteins. Freezing at -20°C caused a major loss in exosomes compared to fresh urine. In contrast, recovery after freezing at -80°C was almost complete. Extensive vortexing after thawing markedly increased exosome recovery in urine frozen at -20 or -80°C, even if frozen for 7 months. The recovery from first and second morning urine was similar. The abundance of cytosolic exosome-associated proteins did not decrease during long-term storage. We concluded: (1) protease inhibitors are essential for preservation; (2) storage at -80°C with extensive vortexing after thawing maximizes the recovery of urinary exosomes; (3) the difference between first and second morning urine exosome-associated protein was small, suggesting minimal protein degradation in the urinary tract/bladder; (4) urinary exosomes remain intact during long-term storage. These urine collection, storage, and processing conditions may be useful for future biomarker discovery efforts.
Journal Article
Complex Patterns of GABAergic Neuronal Deficiency and Type 2 Potassium-Chloride Cotransporter Immaturity in Human Focal Cortical Dysplasia
by
Welsh, Cynthia T
,
Smith, Michael T
,
Han, Pengcheng
in
Brain abnormalities
,
Causes of
,
Chloride
2019
Abstract
Focal cortical dysplasia (FCD) is a common histopathologic finding in cortical specimens resected for refractory epilepsy. GABAergic neuronal abnormalities and K-Cl cotransporter type 2 (KCC2) immaturity may be contributing factors for FCD-related epilepsy. We examined surgical specimens from 12 cases diagnosed with FCD, and brain tissues without developmental abnormality obtained from 6 autopsy cases. We found that GABAergic neuronal density was abnormal in FCD with 2 distinct patterns. In 7 of 12 (58%) FCD subjects, the GABAergic neuron density in dysplastic regions and in neighboring nondysplastic regions was equally reduced, hence we call this a “broad pattern.” In the remaining cases, GABAergic neuron density was decreased in dysplastic regions but not in the neighboring nondysplastic regions; we designate this “restricted pattern.” The different patterns are not associated with pathologic subtypes of FCD. Intracytoplasmic retention of KCC2 is evident in dysmorphic neurons in the majority of FCD type II subjects (5/7) but not in FCD type I. Our study suggests that (1) “broad” GABAergic deficiency may reflect epileptic vulnerability outside the dysplastic area; and (2) abnormal distribution of KCC2 may contribute to seizure generation in patients with FCD type II but not in type I.
Journal Article
Sevoflurane-Induced Dysregulation of Cation-Chloride Cotransporters NKCC1 and KCC2 in Neonatal Mouse Brain
2020
The cation-chloride cotransporters Na+–K+–2Cl−–1 (NKCC1) and K+–2Cl−–2 (KCC2) critically regulate neuronal responses to gamma-aminobutyric acid (GABA). NKCC1 renders GABA excitatory in immature neurons while expression of KCC2 signals GABA maturation to its inhibitory role. Imbalances in NKCC1/KCC2 alter GABA neurotransmission, which may contribute to hyperexcitability and blunted inhibition in neurocircuitry after neonatal exposure to anesthesia. Thus, we hypothesized that anesthetics may dysregulate NKCC1 and/or KCC2 in developing brain. We exposed postnatal day (PND) 7 mice to sevoflurane or carrier gases and assessed NKCC1 and KCC2 expression across three brain regions 6 h and 24 h after initial exposure. To test differences in behavior, we challenged pups receiving sevoflurane or carrier gases on PND7 with propofol on PND8 and recorded parameters of anesthesia induction and maintenance. Sevoflurane exposure increased cortical NKCC1 at 6 h (p = 0.03) and decreased cortical and hippocampal KCC2 at 24 h (p = 0.009 and p = 0.007, respectively). NKCC1/KCC2 ratio was significantly increased at both 6 h (p = 0.02) and 24 h (p = 0.03) in cortex and at 24 h (p = 0.02) in hippocampus. After propofol challenge on PND8, pups previously exposed to sevoflurane on PND7 regained righting reflex significantly faster than their non-exposed cohort (p < 0.001). Disturbing NKCC1/KCC2 balance may underlie circuit hyperexcitability and contribute to neurodevelopmental impairments we have observed in previous studies of neonatal anesthesia exposure. Human infants previously exposed to anesthesia may require higher concentrations of anesthetic drugs, potentially compounding their susceptibility for neurodevelopmental sequalae.
Journal Article
The Therapeutic Potential of Neuronal K-Cl Co-Transporter KCC2 in Huntington’s Disease and Its Comorbidities
2020
Intracellular chloride levels in the brain are regulated primarily through the opposing effects of two cation-chloride co-transporters (CCCs), namely K+-Cl− co-transporter-2 (KCC2) and Na+-K+-Cl− co-transporter-1 (NKCC1). These CCCs are differentially expressed throughout the course of development, thereby determining the excitatory-to-inhibitory γ-aminobutyric acid (GABA) switch. GABAergic excitation (depolarisation) is important in controlling the healthy development of the nervous system; as the brain matures, GABAergic inhibition (hyperpolarisation) prevails. This developmental switch in excitability is important, as uncontrolled regulation of neuronal excitability can have implications for health. Huntington’s disease (HD) is an example of a genetic disorder whereby the expression levels of KCC2 are abnormal due to mutant protein interactions. Although HD is primarily considered a motor disease, many other clinical manifestations exist; these often present in advance of any movement abnormalities. Cognitive change, in addition to sleep disorders, is prevalent in the HD population; the effect of uncontrolled KCC2 function on cognition and sleep has also been explored. Several mechanisms by which KCC2 expression is reduced have been proposed recently, thereby suggesting extensive investigation of KCC2 as a possible therapeutic target for the development of pharmacological compounds that can effectively treat HD co-morbidities. Hence, this review summarizes the role of KCC2 in the healthy and HD brain, and highlights recent advances that attest to KCC2 as a strong research and therapeutic target candidate.
Journal Article
Restoring GABAergic inhibition rescues memory deficits in a Huntington’s disease mouse model
by
Dargaei, Zahra
,
Mahadevan, Vivek
,
Bedard, Simon
in
Aberration
,
Animal cognition
,
Animal memory
2018
Huntington’s disease (HD) is classically characterized as a movement disorder, however cognitive impairments precede the motor symptoms by ∼15 y. Based on proteomic and bioinformatic data linking the Huntingtin protein (Htt) and KCC2, which is required for hyperpolarizing GABAergic inhibition, and the important role of inhibition in learning and memory, we hypothesized that aberrant KCC2 function contributes to the hippocampal-associated learning and memory deficits in HD. We discovered that Htt and KCC2 interact in the hippocampi of wild-type and R6/2-HD mice, with a decrease in KCC2 expression in the hippocampus of R6/2 and YAC128 mice. The reduced expression of the Cl⁻-extruding cotransporter KCC2 is accompanied by an increase in the Cl⁻-importing cotransporter NKCC1, which together result in excitatory GABA in the hippocampi of HD mice. NKCC1 inhibition by the FDA-approved NKCC1 inhibitor bumetanide abolished the excitatory action of GABA and rescued the performance of R6/2 mice on hippocampal-associated behavioral tests.
Journal Article
Preventing neuronal edema increases network excitability after traumatic brain injury
by
Sawant-Pokam, Punam A.
,
Vail, Tyler J.
,
Metcalf, Cameron S.
in
Action potential
,
Animals
,
Biomedical research
2020
Edema is an important target for clinical intervention after traumatic brain injury (TBI). We used in vivo cellular resolution imaging and electrophysiological recording to examine the ionic mechanisms underlying neuronal edema and their effects on neuronal and network excitability after controlled cortical impact (CCI) in mice. Unexpectedly, we found that neuronal edema 48 hours after CCI was associated with reduced cellular and network excitability, concurrent with an increase in the expression ratio of the cation-chloride cotransporters (CCCs) NKCC1 and KCC2. Treatment with the CCC blocker bumetanide prevented neuronal swelling via a reversal in the NKCC1/KCC2 expression ratio, identifying altered chloride flux as the mechanism of neuronal edema. Importantly, bumetanide treatment was associated with increased neuronal and network excitability after injury, including increased susceptibility to spreading depolarizations (SDs) and seizures, known agents of clinical worsening after TBI. Treatment with mannitol, a first-line edema treatment in clinical practice, was also associated with increased susceptibility to SDs and seizures after CCI, showing that neuronal volume reduction, regardless of mechanism, was associated with an excitability increase. Finally, we observed an increase in excitability when neuronal edema normalized by 1 week after CCI. We conclude that neuronal swelling may exert protective effects against damaging excitability in the aftermath of TBI and that treatment of edema has the potential to reverse these effects.
Journal Article
The Expanding Therapeutic Potential of Neuronal KCC2
2020
Dysfunctions in GABAergic inhibitory neural transmission occur in neuronal injuries and neurological disorders. The potassium–chloride cotransporter 2 (KCC2, SLC12A5) is a key modulator of inhibitory GABAergic inputs in healthy adult neurons, as its chloride (Cl−) extruding activity underlies the hyperpolarizing reversal potential for GABAA receptor Cl− currents (EGABA). Manipulation of KCC2 levels or activity improve symptoms associated with epilepsy and neuropathy. Recent works have now indicated that pharmacological enhancement of KCC2 function could reactivate dormant relay circuits in an injured mouse’s spinal cord, leading to functional recovery and the attenuation of neuronal abnormality and disease phenotype associated with a mouse model of Rett syndrome (RTT). KCC2 interacts with Huntingtin and is downregulated in Huntington’s disease (HD), which contributed to GABAergic excitation and memory deficits in the R6/2 mouse HD model. Here, these recent advances are highlighted, which attest to KCC2’s growing potential as a therapeutic target for neuropathological conditions resulting from dysfunctional inhibitory input.
Journal Article
The structural basis of function and regulation of neuronal cotransporters NKCC1 and KCC2
2021
NKCC and KCC transporters mediate coupled transport of Na++K++Cl− and K++Cl− across the plasma membrane, thus regulating cell Cl− concentration and cell volume and playing critical roles in transepithelial salt and water transport and in neuronal excitability. The function of these transporters has been intensively studied, but a mechanistic understanding has awaited structural studies of the transporters. Here, we present the cryo-electron microscopy (cryo-EM) structures of the two neuronal cation-chloride cotransporters human NKCC1 (SLC12A2) and mouse KCC2 (SLC12A5), along with computational analysis and functional characterization. These structures highlight essential residues in ion transport and allow us to propose mechanisms by which phosphorylation regulates transport activity.Zhang et al. present the cryo-electron microscopy structures of the two neuronal cation-chloride cotransporters human NKCC1 and mouse KCC2, identifying their essential residues for ion transport. This study proposes mechanisms by which phosphorylation regulates the activity of these cation-chloride cotransporters.
Journal Article
An Evaluation of Cation–Chloride Cotransporters NKCC1 and KCC2 in Carbamazepine-Resistant Rats
by
Vega-García, Angélica
,
Zavala-Tecuapetla, Cecilia
,
Orozco-Suárez, Sandra
in
Adenosine
,
Animals
,
Anticonvulsants
2025
Approximately one-third of epileptic patients do not respond adequately to drug therapy, leading to the development of drug-resistant epilepsy. Given the established role of dysregulated expression of two cation–chloride cotransporter proteins, NKCC1 and KCC2, in susceptibility to convulsion generation and epilepsy development, the present study evaluates the anticonvulsant potential of bumetanide (BUM, 10 mg/kg, i.p.) and probenecid (PROB, 50 mg/kg, i.p.), the potential of adenosine receptor activation (NECA, 1 mg/kg, i.p.) to modify the anticonvulsant efficacy of BUM, and the changes in NKCC1 and KCC2 protein expression levels in carbamazepine (CBZ)-resistant animals. In the window–pentylenetetrazole (PTZ) kindling model, male Wistar rats that undergo full kindling develop CBZ-resistance. The combination of BUM + PROB appears to have an anticonvulsant effect on CBZ-resistant convulsions, while alterations in the protein levels of the NKCC1 and KCC2 cotransporters are observed in CBZ-resistant animals. Despite the absence of therapeutic efficacy in managing convulsions through adenosine receptor activation (BUM + NECA), the activation of adenosine receptors exhibits the capacity to modulate the levels of the NKCC1 protein in the hippocampus of CBZ-resistant animals. This effect provides the initial evidence for a new therapeutic role of adenosine receptors in regulating the pathological levels of NKCC1 in drug-resistant epilepsy.
Journal Article
Regulation of distal tubule sodium transport: mechanisms and roles in homeostasis and pathophysiology
by
Korbmacher, Christoph
,
Nesterov, Viatcheslav
,
Pearce, David
in
Active transport
,
Aldosterone
,
Calcium
2022
Abstract Regulated Na+ transport in the distal nephron is of fundamental importance to fluid and electrolyte homeostasis. Further upstream, Na+ is the principal driver of secondary active transport of numerous organic and inorganic solutes. In the distal nephron, Na+ continues to play a central role in controlling the body levels and concentrations of a more select group of ions, including K+, Ca++, Mg++, Cl−, and HCO3−, as well as water. Also, of paramount importance are transport mechanisms aimed at controlling the total level of Na+ itself in the body, as well as its concentrations in intracellular and extracellular compartments. Over the last several decades, the transporters involved in moving Na+ in the distal nephron, and directly or indirectly coupling its movement to that of other ions have been identified, and their interrelationships brought into focus. Just as importantly, the signaling systems and their components—kinases, ubiquitin ligases, phosphatases, transcription factors, and others—have also been identified and many of their actions elucidated. This review will touch on selected aspects of ion transport regulation, and its impact on fluid and electrolyte homeostasis. A particular focus will be on emerging evidence for site-specific regulation of the epithelial sodium channel (ENaC) and its role in both Na+ and K+ homeostasis. In this context, the critical regulatory roles of aldosterone, the mineralocorticoid receptor (MR), and the kinases SGK1 and mTORC2 will be highlighted. This includes a discussion of the newly established concept that local K+ concentrations are involved in the reciprocal regulation of Na+-Cl− cotransporter (NCC) and ENaC activity to adjust renal K+ secretion to dietary intake.
Journal Article