Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
561
result(s) for
"lab-on-a-chip sensor"
Sort by:
Surface Acoustic Waves (SAW) Sensors: Tone-Burst Sensing for Lab-on-a-Chip Devices
2024
The article presents the design concept of a surface acoustic wave (SAW)-based lab-on-a-chip sensor with multifrequency and multidirectional sensitivity. The conventional SAW sensors use delay lines that suffer from multiple signal losses such as insertion, reflection, transmission losses, etc. Most delay lines are designed to transmit and receive continuous signal at a fixed frequency. Thus, the delay lines are limited to only a few features, like frequency shift and change in wave velocity, during the signal analysis. These facts lead to limited sensitivity and a lack of opportunity to utilize the multi-directional variability of the sensing platform at different frequencies. Motivated by these facts, a guided wave sensing platform that utilizes simultaneous tone burst-based excitation in multiple directions is proposed in this article. The design incorporates a five-count tone burst signal for the omnidirectional actuation. This helps the acquisition of sensitive long part of the coda wave (CW) signals from multiple directions, which is hypothesized to enhance sensitivity through improved signal analysis. In this article, the design methodology and implementation of unique tone burst interdigitated electrodes (TB-IDT) are presented. Sensing using TB-IDT enables accessing multiple frequencies simultaneously. This results in a wider frequency spectrum and allows better scope for the detection of different target analytes. The novel design process utilized guided wave analysis of the substrate, and selective directional focused interdigitated electrodes (F-IDT) were implemented. The article demonstrates computational simulation along with experimental results with validation of multifrequency and multidirectional sensing capability.
Journal Article
A Novel Microfluidics Droplet-Based Interdigitated Ring-Shaped Electrode Sensor for Lab-on-a-Chip Applications
by
Moraes da Silva Junior, Salomão
,
Bento Ribeiro, Luiz Eduardo
,
Stiens, Johan
in
Amplitudes
,
Biosensors
,
Capacitance
2024
This paper presents a comprehensive study focusing on the detection and characterization of droplets with volumes in the nanoliter range. Leveraging the precise control of minute liquid volumes, we introduced a novel spectroscopic on-chip microsensor equipped with integrated microfluidic channels for droplet generation, characterization, and sensing simultaneously. The microsensor, designed with interdigitated ring-shaped electrodes (IRSE) and seamlessly integrated with microfluidic channels, offers enhanced capacitance and impedance signal amplitudes, reproducibility, and reliability in droplet analysis. We were able to make analyses of droplet length in the range of 1.0–6.0 mm, velocity of 0.66–2.51 mm/s, and volume of 1.07 nL–113.46 nL. Experimental results demonstrated that the microsensor’s performance is great in terms of droplet size, velocity, and length, with a significant signal amplitude of capacitance and impedance and real-time detection capabilities, thereby highlighting its potential for facilitating microcapsule reactions and enabling on-site real-time detection for chemical and biosensor analyses on-chip. This droplet-based microfluidics platform has great potential to be directly employed to promote advances in biomedical research, pharmaceuticals, drug discovery, food engineering, flow chemistry, and cosmetics.
Journal Article
Silicon Photonic Biosensors Using Label-Free Detection
by
Shoman, Hossam
,
Ratner, Daniel M.
,
Luan, Enxiao
in
Biosensing Techniques - instrumentation
,
Biosensing Techniques - methods
,
Bragg grating
2018
Thanks to advanced semiconductor microfabrication technology, chip-scale integration and miniaturization of lab-on-a-chip components, silicon-based optical biosensors have made significant progress for the purpose of point-of-care diagnosis. In this review, we provide an overview of the state-of-the-art in evanescent field biosensing technologies including interferometer, microcavity, photonic crystal, and Bragg grating waveguide-based sensors. Their sensing mechanisms and sensor performances, as well as real biomarkers for label-free detection, are exhibited and compared. We also review the development of chip-level integration for lab-on-a-chip photonic sensing platforms, which consist of the optical sensing device, flow delivery system, optical input and readout equipment. At last, some advanced system-level complementary metal-oxide semiconductor (CMOS) chip packaging examples are presented, indicating the commercialization potential for the low cost, high yield, portable biosensing platform leveraging CMOS processes.
Journal Article
Micro- and nano-devices for electrochemical sensing
by
Scavetta, Erika
,
Mariani, Federica
,
Gualandi, Isacco
in
Analytical Chemistry
,
Blood vessels
,
Carbon
2022
Electrode miniaturization has profoundly revolutionized the field of electrochemical sensing, opening up unprecedented opportunities for probing biological events with a high spatial and temporal resolution, integrating electrochemical systems with microfluidics, and designing arrays for multiplexed sensing. Several technological issues posed by the desire for downsizing have been addressed so far, leading to micrometric and nanometric sensing systems with different degrees of maturity. However, there is still an endless margin for researchers to improve current strategies and cope with demanding sensing fields, such as lab-on-a-chip devices and multi-array sensors, brain chemistry, and cell monitoring. In this review, we present current trends in the design of micro-/nano-electrochemical sensors and cutting-edge applications reported in the last 10 years. Micro- and nanosensors are divided into four categories depending on the transduction mechanism, e.g., amperometric, impedimetric, potentiometric, and transistor-based, to best guide the reader through the different detection strategies and highlight major advancements as well as still unaddressed demands in electrochemical sensing.
Graphical Abstract
Journal Article
Feeling the force
by
Jan T. Burri
,
Nino F. Läubli
,
Ueli Grossniklaus
in
Arabidopsis thaliana
,
Barriers
,
cell growth
2018
Physical forces are involved in the regulation of plant development and morphogenesis by translating mechanical stress into the modification of physiological processes, which, in turn, can affect cellular growth. Pollen tubes respond rapidly to external stimuli and provide an ideal system to study the effect of mechanical cues at the single-cell level. Here, pollen tubes were exposed to mechanical stress while monitoring the reconfiguration of their growth and recording the generated forces in real-time.
We combined a lab-on-a-chip device with a microelectromechanical systems (MEMS)-based capacitive force sensor to mimic and quantify the forces that are involved in pollen tube navigation upon confronting mechanical obstacles. Several stages of obstacle avoidance were identified, including force perception, growth adjustment and penetration.
We have experimentally determined the perceptive force threshold, which is the force threshold at which the pollen tube reacts to an obstacle, for Lilium longiflorum and Arabidopsis thaliana. In addition, the method we developed provides a way to calculate turgor pressure based on force and optical data.
Pollen tubes sense physical barriers and actively adjust their growth behavior to overcome them. Furthermore, our system offers an ideal platform to investigate intracellular activity during force perception and growth adaption in tip growing cells.
Journal Article
Surface acoustic wave (SAW) techniques in tissue engineering
2021
Recently, the introduction of surface acoustic wave (SAW) technique for microfluidics has drawn a lot of attention. The pattern and mutual communication in cell layers, tissues, and organs play a critical role in tissue homeostasis and regeneration and may contribute to disease occurrence and progression. Tissue engineering aims to repair and regenerate damaged organs, depending on biomimetic scaffolds and advanced fabrication technology. However, traditional bioengineering synthesis approaches are time-consuming, heterogeneous, and unmanageable. It is hard to pattern cells in scaffolds effectively with no impact on cell viability and function. Here, we summarize a biocompatible, easily available, label-free, and non-invasive tool, surface acoustic wave (SAW) technique, which is getting a lot of attention in tissue engineering. SAW technique can realize accurate sorting, manipulation, and cells’ pattern and rapid formation of spheroids. By integrating several SAW devices onto lab-on-a-chip platforms, tissue engineering lab-on-a-chip system was proposed. To the best of our knowledge, this is the first report to summarize the application of this novel technique in the field of tissue engineering.
Journal Article
Surface Acoustic Wave (SAW) Sensors: Physics, Materials, and Applications
2022
Surface acoustic waves (SAWs) are the guided waves that propagate along the top surface of a material with wave vectors orthogonal to the normal direction to the surface. Based on these waves, SAW sensors are conceptualized by employing piezoelectric crystals where the guided elastodynamic waves are generated through an electromechanical coupling. Electromechanical coupling in both active and passive modes is achieved by integrating interdigitated electrode transducers (IDT) with the piezoelectric crystals. Innovative meta-designs of the periodic IDTs define the functionality and application of SAW sensors. This review article presents the physics of guided surface acoustic waves and the piezoelectric materials used for designing SAW sensors. Then, how the piezoelectric materials and cuts could alter the functionality of the sensors is explained. The article summarizes a few key configurations of the electrodes and respective guidelines for generating different guided wave patterns such that new applications can be foreseen. Finally, the article explores the applications of SAW sensors and their progress in the fields of biomedical, microfluidics, chemical, and mechano-biological applications along with their crucial roles and potential plans for improvements in the long-term future in the field of science and technology.
Journal Article
Optical Biosensors Based on Silicon-On-Insulator Ring Resonators: A Review
2019
Recent developments in optical biosensors based on integrated photonic devices are reviewed with a special emphasis on silicon-on-insulator ring resonators. The review is mainly devoted to the following aspects: (1) Principles of sensing mechanism, (2) sensor design, (3) biofunctionalization procedures for specific molecule detection and (4) system integration and measurement set-ups. The inherent challenges of implementing photonics-based biosensors to meet specific requirements of applications in medicine, food analysis, and environmental monitoring are discussed.
Journal Article
A Microfluidic-Based Sensing Platform for Rapid Quality Control on Target Cells from Bioreactors
by
Visconti, Paolo
,
Bramanti, Alessandro Paolo
,
Romano, Fabio
in
Antibodies
,
Antigens
,
Bioreactors
2024
We investigated the design and characterization of a Lab-On-a-Chip (LoC) cell detection system primarily designed to support immunotherapy in cancer treatment. Immunotherapy uses Chimeric Antigen Receptors (CARs) and T Cell Receptors (TCRs) to fight cancer, engineering the response of the immune system. In recent years, it has emerged as a promising strategy for personalized cancer treatment. However, it requires bioreactor-based cell culture expansion and manual quality control (QC) of the modified cells, which is time-consuming, labour-intensive, and prone to errors. The miniaturized LoC device for automated QC demonstrated here is simple, has a low cost, and is reliable. Its final target is to become one of the building blocks of an LoC for immunotherapy, which would take the place of present labs and manual procedures to the benefit of throughput and affordability. The core of the system is a commercial, on-chip-integrated capacitive sensor managed by a microcontroller capable of sensing cells as accurately measured charge variations. The hardware is based on standardized components, which makes it suitable for mass manufacturing. Moreover, unlike in other cell detection solutions, no external AC source is required. The device has been characterized with a cell line model selectively labelled with gold nanoparticles to simulate its future use in bioreactors in which labelling can apply to successfully engineered CAR-T-cells. Experiments were run both in the air—free drop with no microfluidics—and in the channel, where the fluid volume was considerably lower than in the drop. The device showed good sensitivity even with a low number of cells—around 120, compared with the 107 to 108 needed per kilogram of body weight—which is desirable for a good outcome of the expansion process. Since cell detection is needed in several contexts other than immunotherapy, the usefulness of this LoC goes potentially beyond the scope considered here.
Journal Article
Significantly enhanced coupling effect and gap plasmon resonance in a MIM-cavity based sensing structure
by
Chiang, Hai-Pang
,
Lim, Chee Ming
,
Chou Chao, Chung-Ting
in
639/925
,
639/925/927
,
Biochemical analysis
2021
Herein, we design a high sensitivity with a multi-mode plasmonic sensor based on the square ring-shaped resonators containing silver nanorods together with a metal–insulator-metal bus waveguide. The finite element method can analyze the structure's transmittance properties and electromagnetic field distributions in detail. Results show that the coupling effect between the bus waveguide and the side-coupled resonator can enhance by generating gap plasmon resonance among the silver nanorods, increasing the cavity plasmon mode in the resonator. The suggested structure obtained a relatively high sensitivity and acceptable figure of merit and quality factor of about 2473 nm/RIU (refractive index unit), 34.18 1/RIU, and 56.35, respectively. Thus, the plasmonic sensor is ideal for lab-on-chip in gas and biochemical analysis and can significantly enhance the sensitivity by 177% compared to the regular one. Furthermore, the designed structure can apply in nanophotonic devices, and the range of the detected refractive index is suitable for gases and fluids (e.g., gas, isopropanol, optical oil, and glucose solution).
Journal Article