Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
12 result(s) for "large-area telescope"
Sort by:
Fermi-LAT Observations of the Gamma-Ray Burst GRB 130427A
The observations of the exceptionally bright gamma-ray burst (GRB) 130427A by the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope provide constraints on the nature of these unique astrophysical sources. GRB 130427A had the largest fluence, highest-energy photon (95 GeV), longest γ-ray duration (20 hours), and one of the largest isotropie energy releases ever observed from a GRB. Temporal and spectral analyses of GRB 130427A challenge the widely accepted model that the nonthermal high-energy emission in the afterglow phase of GRBs is synchrotron emission radiated by electrons accelerated at an external shock.
Detection of the Characteristic Pion-Decay Signature in Supernova Remnants
Cosmic rays are particles (mostly protons) accelerated to relativistic speeds. Despite wide agreement that supernova remnants (SNRs) are the sources of galactic cosmic rays, unequivocal evidence for the acceleration of protons in these objects is still lacking. When accelerated protons encounter interstellar material, they produce neutral pions, which in turn decay into gamma rays. This offers a compelling way to detect the acceleration sites of protons. The identification of pion-decay gamma rays has been difficult because high-energy electrons also produce gamma rays via bremsstrahlung and inverse Compton scattering. We detected the characteristic pion-decay feature in the gamma-ray spectra of two SNRs, IC 443 and W44, with the Fermi Large Area Telescope. This detection provides direct evidence that cosmic-ray protons are accelerated in SNRs.
The Imprint of the Extragalactic Background Light in the Gamma-Ray Spectra of Blazars
The light emitted by stars and accreting compact objects through the history of the universe is encoded in the intensity of the extragalactic background light (EBL). Knowledge of the EBL is important to understand the nature of star formation and galaxy evolution, but direct measurements of the EBL are limited by galactic and other foreground emissions. Here, we report an absorption feature seen in the combined spectra of a sample of gamma-ray blazars out to a redshift of z ~1.6. This feature is caused by attenuation of gamma rays by the EBL at optical to ultraviolet frequencies and allowed us to measure the EBL flux density in this frequency band.
Binary Millisecond Pulsar Discovery via Gamma-Ray Pulsations
Millisecond pulsars, old neutron stars spun up by accreting matter from a companion star, can reach high rotation rates of hundreds of revolutions per second. Until now, all such \"recycled\" rotation-powered pulsars have been detected by their spin-modulated radio emission. In a computing-intensive blind search of gamma-ray data from the Fermi Large Area Telescope (with partial constraints from optical data), we detected a 2.5-millisecond pulsar, PSR J1311—3430. This unambiguously explains a formerly unidentified gamma-ray source that had been a decade-long enigma, confirming previous conjectures. The pulsar is in a circular orbit with an orbital period of only 93 minutes, the shortest of any spin-powered pulsar binary ever found.
Detection of 16 Gamma-Ray Pulsars Through Blind Frequency Searches Using the Fermi LAT
Pulsars are rapidly rotating, highly magnetized neutron stars emitting radiation across the electromagnetic spectrum. Although there are more than 1800 known radio pulsars, until recently only seven were observed to pulse in gamma rays, and these were all discovered at other wavelengths. The Fermi Large Area Telescope (LAT) makes it possible to pinpoint neutron stars through their gamma-ray pulsations. We report the detection of 16 gamma-ray pulsars in blind frequency searches using the LAT. Most of these pulsars are coincident with previously unidentified gamma-ray sources, and many are associated with supernova remnants. Direct detection of gamma-ray pulsars enables studies of emission mechanisms, population statistics, and the energetics of pulsar wind nebulae and supernova remnants.
Sixteen Years of Gamma-Ray Discoveries and AGN Observations with Fermi-LAT
In June 2024, the Fermi Gamma-Ray Space Telescope (FGST) celebrated its 16th year of operations. The Fermi Large Area Telescope (Fermi-LAT) is the main instrument onboard the FGST satellite and is designed to be sensitive to γ-rays in the energy range from about 20MeV up to the TeV regime. From its launch, the Fermi-LAT has collected more than 4.53billion photon events, providing crucial information to improve our understanding of particle acceleration and γ-ray production phenomena in astrophysical sources. The most abundant in the last 4FGL-data release 4 (4FGL-DR4), most powerful and persistent γ-ray emitters in the sky are the Active Galactic Nuclei (AGNs). These sources are extremely luminous galaxy cores powered by a super massive black hole (SMBH) with a mass ranging from millions to billions of times the mass of the Sun. The ASI-SSDC, a facility of the Agenzia Spaziale Italiana (ASI), plays a pivotal role in supporting Fermi-LAT by providing the essential infrastructure for the storage, processing, and analysis of the vast amounts of data generated by the mission. As a key asset to various space missions, ASI-SSDC contributes significantly to advancing research in high-energy astrophysics and γ-ray observations.
Design of an interplanetary ultralow-noise three-dimensional energetic particle spectrometer
The origin and acceleration of solar and heliospheric energetic particles have been prevalent research frontiers in space physics. Solar and heliospheric energetic particles measured in the interplanetary medium (IPM) can be classified into two major groups: continuous \"solar wind suprathermal particles\" and transient \"solar energetic particles\". Due to the limited sensitivity of instruments used to investigate energetic particles in the IPM, the origin/acceleration processes of heliospheric energetic particles remain poorly understood. In this study, we designed a new-generation interplanetary ultralow-noise three-dimensional energetic particle spectrometer meeting leading world-class specifications. The spectrometer utilizes a double-ended telescope structure and multi-layer, multi-pixel semiconductor detectors to assess the complete three-dimensional distribution of 20-1000 keV electrons and 25-12000 keV protons in the IPM. The spectrometer integrates the following cutting-edge technologies: (1) utilizing
Exoplanet orbital eccentricities derived from LAMOST–Kepler analysis
The nearly circular (mean eccentricity ē ≈ 0.06) and coplanar (mean mutual inclination ī ≈ 3°) orbits of the solar system planets motivated Kant and Laplace to hypothesize that planets are formed in disks, which has developed into the widely accepted theory of planet formation. The first several hundred extrasolar planets (mostly Jovian) discovered using the radial velocity (RV) technique are commonly on eccentric orbits (ē ≈ 0.3). This raises a fundamental question: Are the solar system and its formation special? The Kepler mission has found thousands of transiting planets dominated by sub-Neptunes, but most of their orbital eccentricities remain unknown. By using the precise spectroscopic host star parameters from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) observations, we measure the eccentricity distributions for a large (698) and homogeneous Kepler planet sample with transit duration statistics. Nearly half of the planets are in systems with single transiting planets (singles), whereas the other half are multiple transiting planets (multiples). We find an eccentricity dichotomy: on average, Kepler singles are on eccentric orbits with ē ≈ 0.3, whereas the multiples are on nearly circular ( e ¯ = 0.04 − 0.04 + 0.03 ) and coplanar ( i ¯ = 1.4 − 1.1 + 0.8 degree) orbits similar to those of the solar system planets. Our results are consistent with previous studies of smaller samples and individual systems. We also show that Kepler multiples and solar system objects follow a common relation [ē ≈ (1–2)×ī] between mean eccentricities and mutual inclinations. The prevalence of circular orbits and the common relation may imply that the solar system is not so atypical in the galaxy after all.
LAMOST telescope reveals that Neptunian cousins of hot Jupiters are mostly single offspring of stars that are rich in heavy elements
We discover a population of short-period, Neptune-size planets sharing key similarities with hot Jupiters: both populations are preferentially hosted by metal-rich stars, and both are preferentially found in Kepler systems with single-transiting planets. We use accurate Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) Data Release 4 (DR4) stellar parameters for main-sequence stars to study the distributions of short-period (1 d < P < 10 d) Kepler planets as a function of host star metallicity. The radius distribution of planets around metal-rich stars is more “puffed up” compared with that around metal-poor hosts. In two period–radius regimes, planets preferentially reside around metal-rich stars, while there are hardly any planets around metal-poor stars. One is the well-known hot Jupiters, and the other one is a population of Neptune-size planets (2R ⊕ ≲ R p ≲ 6R ⊕), dubbed “Hoptunes.” Also like hot Jupiters, Hoptunes occur more frequently in systems with single-transiting planets although the fraction of Hoptunes occurring in multiples is larger than that of hot Jupiters. About 1% of solar-type stars host Hoptunes, and the frequencies of Hoptunes and hot Jupiters increase with consistent trends as a function of [Fe/H]. In the planet radius distribution, hot Jupiters and Hoptunes are separated by a “valley” at approximately Saturn size (in the range of 6R ⊕ ≲ R p ≲ 10R ⊕), and this “hot-Saturn valley” represents approximately an order-of-magnitude decrease in planet frequency compared with hot Jupiters and Hoptunes. The empirical “kinship” between Hoptunes and hot Jupiters suggests likely common processes (migration and/or formation) responsible for their existence.