Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
60
result(s) for
"latency reversing agents"
Sort by:
Compounds producing an effective combinatorial regimen for disruption of HIV‐1 latency
by
Lomness, Adam
,
Bernhard, Wendy
,
Sadowski, Ivan
in
Anti-HIV Agents - chemistry
,
Anti-HIV Agents - pharmacology
,
Antiretroviral drugs
2018
Highly active antiretroviral therapy (HAART) has improved the outlook for the HIV epidemic, but does not provide a cure. The proposed “shock‐and‐kill” strategy is directed at inducing latent HIV reservoirs, which may then be purged via boosted immune response or targeting infected cells. We describe five novel compounds that are capable of reversing HIV latency without affecting the general T‐cell activation state. The new compounds exhibit synergy for reactivation of latent provirus with other latency‐reversing agents (LRAs), in particular ingenol‐3‐angelate/PEP005. One compound, designated PH02, was efficient at reactivating viral transcription in several cell lines bearing reporter HIV‐1 at different integration sites. Furthermore, it was capable of reversing latency in resting CD4
+
T lymphocytes from latently infected aviremic patient cells on HAART, while producing minimal cellular toxicity. The combination of PH02 and PEP005 produces a strong synergistic effect for reactivation, as demonstrated through a quantitative viral outgrowth assay (qVOA), on CD4
+
T lymphocytes from HIV‐1‐infected individuals. We propose that the PH02/PEP005 combination may represent an effective novel treatment for abrogating persistent HIV‐1 infection.
Synopsis
HIV‐1 latency is the major obstacle to developing a permanent cure. The shock and kill strategy aims to eliminate latent HIV reservoirs by exposing infected cells. This study reveals new compounds that reverse HIV‐1 latency, demonstrated through
in vitro
and
ex vivo
investigation.
High‐throughput screening identified PH compounds that exhibit HIV latency reversing activity when examined on latently infected reporter cell lines and on resting CD4
+
T cells purified from aviremic HIV‐1 infected patients on antiretroviral therapy.
PH compounds are capable of reversing latency without affecting global T‐cell activation states.
PH compounds exhibit a significant synergistic effect when combined with other known latency reversing agents.
In particular, PH02 combined with PEP005/ingenol‐3‐angelate show promising latency reversing activity at clinically relevant concentrations, which is demonstrated through quantitative viral outgrowth assays on CD4
+
T lymphocytes purified from HIV‐infected individuals on therapy.
Graphical Abstract
HIV‐1 latency is the major obstacle to developing a permanent cure. The shock and kill strategy aims to eliminate latent HIV reservoirs by exposing infected cells. This study reveals new compounds that reverse HIV‐1 latency, demonstrated through
in vitro
and
ex vivo
investigation.
Journal Article
Distinct chromatin functional states correlate with HIV latency reactivation in infected primary CD4+ T cells
by
Dahabieh, Matthew S
,
Svensson, J Peter
,
Tojal Da Silva, Israel
in
CD4-Positive T-Lymphocytes - immunology
,
CD4-Positive T-Lymphocytes - pathology
,
CD4-Positive T-Lymphocytes - virology
2018
Human immunodeficiency virus (HIV) infection is currently incurable, due to the persistence of latently infected cells. The ‘shock and kill’ approach to a cure proposes to eliminate this reservoir via transcriptional activation of latent proviruses, enabling direct or indirect killing of infected cells. Currently available latency-reversing agents (LRAs) have however proven ineffective. To understand why, we used a novel HIV reporter strain in primary CD4+ T cells and determined which latently infected cells are reactivatable by current candidate LRAs. Remarkably, none of these agents reactivated more than 5% of cells carrying a latent provirus. Sequencing analysis of reactivatable vs. non-reactivatable populations revealed that the integration sites were distinguishable in terms of chromatin functional states. Our findings challenge the feasibility of ‘shock and kill’, and suggest the need to explore other strategies to control the latent HIV reservoir.
Journal Article
Estrogen receptor-1 is a key regulator of HIV-1 latency that imparts gender-specific restrictions on the latent reservoir
by
Dobrowolski, Curtis
,
Das, Biswajit
,
Johnston, Rowena
in
17β-Estradiol
,
Adult
,
Antiretroviral agents
2018
Unbiased shRNA library screens revealed that the estrogen receptor-1 (ESR-1) is a key factor regulating HIV-1 latency. In both Jurkat T cells and a Th17 primary cell model for HIV-1 latency, selective estrogen receptor modulators (SERMs, i.e., fulvestrant, raloxifene, and tamoxifen) are weak proviral activators and sensitize cells to latency-reversing agents (LRAs) including low doses of TNF-α (an NF-κB inducer), the histone deacetylase inhibitor vorinostat (soruberoylanilide hydroxamic acid, SAHA), and IL-15. To probe the physiologic relevance of these observations, leukapheresis samples from a cohort of 12 well-matched reproductive-age women and men on fully suppressive antiretroviral therapy were evaluated by an assay measuring the production of spliced envelope (env) mRNA (the EDITS assay) by next-generation sequencing. The cells were activated by T cell receptor (TCR) stimulation, IL-15, or SAHA in the presence of either β-estradiol or an SERM. β-Estradiol potently inhibited TCR activation of HIV-1 transcription, while SERMs enhanced the activity of most LRAs. Although both sexes responded to SERMs and β-estradiol, females showed much higher levels of inhibition in response to the hormone and higher reactivity in response to ESR-1 modulators than males. Importantly, the total inducible RNA reservoir, as measured by the EDITS assay, was significantly smaller in the women than in the men. We conclude that concurrent exposure to estrogen is likely to limit the efficacy of viral emergence from latency and that ESR-1 is a pharmacologically attractive target that can be exploited in the design of therapeutic strategies for latency reversal.
Journal Article
Strategies to eradicate HIV from infected patients: elimination of latent provirus reservoirs
2019
35 years since identification of HIV as the causative agent of AIDS, and 35 million deaths associated with this disease, significant effort is now directed towards the development of potential cures. Current anti-retroviral (ART) therapies for HIV/AIDS can suppress virus replication to undetectable levels, and infected individuals can live symptom free so long as treatment is maintained. However, removal of therapy allows rapid re-emergence of virus from a highly stable reservoir of latently infected cells that exist as a barrier to elimination of the infection with current ART. Prospects of a cure for HIV infection are significantly encouraged by two serendipitous cases where individuals have entered remission following stem cell transplantation from compatible HIV-resistant donors. However, development of a routine cure that could become available to millions of infected individuals will require a means of specifically purging cells harboring latent HIV, preventing replication of latent provirus, or destruction of provirus genomes by gene editing. Elimination of latently infected cells will require a means of exposing this population, which may involve identification of a natural specific biomarker or therapeutic intervention to force their exposure by reactivation of virus expression. Accordingly, the proposed “Shock and Kill” strategy involves treatment with latency-reversing agents (LRA) to induce HIV provirus expression thus exposing these cells to killing by cellular immunity or apoptosis. Current efforts to enable this strategy are directed at developing improved combinations of LRA to produce broad and robust induction of HIV provirus and enhancing the elimination of cells where replication has been reactivated by targeted immune modulation. Alternative strategies may involve preventing re-emergence virus from latently infected cells by “Lock and Block” intervention, where transcription of provirus is inhibited to prevent virus spread or disruption of the HIV provirus genome by genome editing.
Journal Article
A Pilot Study Assessing the Safety and Latency-Reversing Activity of Disulfiram in HIV-1–Infected Adults on Antiretroviral Therapy
by
Eisele, Evelyn
,
McCance-Katz, Elinore F.
,
Chander, Geetanjali
in
Adult
,
AIDS
,
Anti-Retroviral Agents - therapeutic use
2014
Background. Transcriptionally silent human immunodeficiency virus type 1 (HIV-1) DNA persists in resting memory CD4 + T cells despite antiretroviral therapy. In a primary cell model, the antialcoholism drug disulfiram has been shown to induce HIV-1 transcription in latently infected resting memory CD4 + T cells at concentrations achieved in vivo. Methods. We conducted a single-arm pilot study to evaluate whether 500 mg of disulfiram administered daily for 14 days to HIV-1–infected individuals on stable suppressive antiretroviral therapy would result in reversal of HIV-1 latency with a concomitant transient increase in residual viremia or depletion of the latent reservoir in resting memory CD4 + T cells. Results. Disulfiram was safe and well tolerated. There was a high level of subject-to-subject variability in plasma disulfiram levels. The latent reservoir did not change significantly (1.16-fold change; 95% confidence interval [CI], .70- to 1.92-fold; P = .56). During disulfiram administration, residual viremia did not change significantly compared to baseline (1.53-fold; 95% CI, .88- to 2.69-fold; P = .13), although residual viremia was estimated to increase by 1.88-fold compared to baseline during the postdosing period (95% CI, 1.03- to 3.43-fold; P = .04). In a post hoc analysis, a rapid and transient increase in viremia was noted in a subset of individuals (n = 6) with immediate post-dose sampling (HIV-1 RNA increase, 2.96-fold; 95% CI, 1.29- to 6.81-fold; P = .01). Conclusions. Administration of disulfiram to patients on antiretroviral therapy does not reduce the size of the latent reservoir. A possible dose-related effect on residual viremia supports future studies assessing the impact of higher doses on HIV-1 production. Disulfiram affects relevant signaling pathways and can be safely administered, supporting future studies of this drug.
Journal Article
The Use of Toll-Like Receptor Agonists in HIV-1 Cure Strategies
by
Gunst, Jesper Damsgaard
,
Søgaard, Ole Schmeltz
,
Martinsen, Janne Tegder
in
Adjuvants
,
Adjuvants, Immunologic - administration & dosage
,
Agonists
2020
Toll-like receptors (TLRs) are a family of pattern recognition receptors and part of the first line of defense against invading microbes. In humans, we know of 10 different TLRs, which are expressed to varying degrees in immune cell subsets. Engaging TLRs through their specific ligands leads to activation of the innate immune system and secondarily priming of the adaptive immune system. Because of these unique properties, TLR agonists have been investigated as immunotherapy in cancer treatment for many years, but in recent years there has also been growing interest in the use of TLR agonists in the context of human immunodeficiency virus type 1 (HIV-1) cure research. The primary obstacle to curing HIV-1 is the presence of a latent viral reservoir in transcriptionally silent immune cells. Due to the very limited transcription of the integrated HIV-1 proviruses, latently infected cells cannot be targeted and cleared by immune effector mechanisms. TLR agonists are very interesting in this context because of their potential dual effects as latency reverting agents (LRAs) and immune modulatory compounds. Here, we review preclinical and clinical data on the impact of TLR stimulation on HIV-1 latency as well as antiviral and HIV-1-specific immunity. We also focus on the promising role of TLR agonists in combination strategies in HIV-1 cure research. Different combinations of TLR agonists and broadly neutralizing antibodies or TLRs agonists as adjuvants in HIV-1 vaccines have shown very encouraging results in non-human primate experiments and these concepts are now moving into clinical testing.
Journal Article
Proviral Latency, Persistent Human Immunodeficiency Virus Infection, and the Development of Latency Reversing Agents
by
Margolis, David M.
,
Archin, Nancie M.
in
Anti-HIV Agents - isolation & purification
,
Anti-HIV Agents - pharmacology
,
HIV - drug effects
2017
Quiescent proviral genomes that persist during human immunodeficiency virus type 1 (HIV-1) infection despite effective antiretroviral therapy (ART) cam fuel rebound viremia after ART interruption and is a central obstacle to the cure of HIV infection. The induction of quiescent provirus is the goal of a new class of potential therapeutics, latency reversing agents (LRAs). The discovery, development, and testing of HIV LRAs is a key part of current efforts to develop latency reversal and viral clearance strategies to eradicate established HIV infection. The development of LRAs is burdened by many uncertainties that make drug discovery difficult. The biology of HIV latency is complex and incompletely understood. Potential targets for LRAs are host factors, and the potential toxicities of host-directed therapies in individuals that are otherwise clinically stable may be unacceptable. Assays to measure latency reversal and assess the effectiveness of potential therapeutics are complex and incompletely validated. Despite these obstacles, novel LRAs are under development and beginning to enter combination testing with viral clearance strategies. It is hoped that the steady advances in the development of LRAs now being paired with emerging immunotherapeutics to clear persistently infected cells will soon allow measurable clinical advances toward an HIV cure.
Journal Article
TRIM28 promotes HIV-1 latency by SUMOylating CDK9 and inhibiting P-TEFb
by
Liu, Guangyan
,
Zhang, Hui
,
Ma, Xiancai
in
Cell Line, Tumor
,
Cyclin T1
,
Cyclin-dependent kinase 9
2019
Comprehensively elucidating the molecular mechanisms of human immunodeficiency virus type 1 (HIV-1) latency is a priority to achieve a functional cure. As current 'shock' agents failed to efficiently reactivate the latent reservoir, it is important to discover new targets for developing more efficient latency-reversing agents (LRAs). Here, we found that TRIM28 potently suppresses HIV-1 expression by utilizing both SUMO E3 ligase activity and epigenetic adaptor function. Through global site-specific SUMO-MS study and serial SUMOylation assays, we identified that P-TEFb catalytic subunit CDK9 is significantly SUMOylated by TRIM28 with SUMO4. The Lys44, Lys56 and Lys68 residues on CDK9 are SUMOylated by TRIM28, which inhibits CDK9 kinase activity or prevents P-TEFb assembly by directly blocking the interaction between CDK9 and Cyclin T1, subsequently inhibits viral transcription and contributes to HIV-1 latency. The manipulation of TRIM28 and its consequent SUMOylation pathway could be the target for developing LRAs.
The human immunodeficiency virus-1, or HIV-1, infects certain human cells, including white blood cells. One reason the infection is incurable is because the virus can integrate its genetic information into its host, and essentially ‘sleep’ within the host cell, a process called latency. This helps to hide HIV-1 from the immune system and stops it getting destroyed.
Latency represents a critical challenge in treating and curing HIV-1. One proposed cure for HIV-1 involves ‘shocking’ the viruses out of latency so that they can be eliminated. Applying this so-called shock and kill approach means scientists need to understand more about how latency is maintained. Previous evidence shows that latency requires proteins known as histone deacetylases and histone methyltransferases. Certain gene-silencing proteins called transcription suppressors are also involved.
Ma et al. have now examined latent HIV-1 in several kinds of human cells grown in the laboratory. The cells were modified to make certain proteins at much lower levels than normal. The experiments showed that the loss of a protein called TRIM28 ‘wakes up’ latent HIV-1. TRIM28 attaches chemical marks called SUMOylations to gene regulators in the cell. These SUMOylations restrict the activity of HIV-1’s genes, which is important to maintain latency. Specifically, TRIM28 adds SUMOylations to a protein named CDK9 at three key positions.
Reducing the levels of TRIM28 made it easier to shock many HIV-1 in infected cells out of latency. With further investigation, targeting TRIM28 may one day be used to treat HIV-1 infection through a shock and kill method.
Journal Article
Epigenetic crosstalk in chronic infection with HIV-1
by
Van Lint Carine
,
Ait-Ammar Amina
,
Verdikt Roxane
in
Antiretroviral drugs
,
Antiretroviral therapy
,
Chronic infection
2020
Human immunodeficiency virus 1 (HIV-1) replicates through the integration of its viral DNA into the genome of human immune target cells. Chronically infected individuals thus carry a genomic burden of virus-derived sequences that persists through antiretroviral therapy. This burden consists of a small fraction of intact, but transcriptionally silenced, i.e. latent, viral genomes and a dominant fraction of defective sequences. Remarkably, all viral-derived sequences are subject to interaction with host cellular physiology at various levels. In this review, we focus on epigenetic aspects of this interaction. We provide a comprehensive overview of how epigenetic mechanisms contribute to establishment and maintenance of HIV-1 gene repression during latency. We furthermore summarize findings indicating that HIV-1 infection leads to changes in the epigenome of target and bystander immune cells. Finally, we discuss how an improved understanding of epigenetic features and mechanisms involved in HIV-1 infection could be exploited for clinical use.
Journal Article
HIV Reservoirs and Treatment Strategies toward Curing HIV Infection
by
Matsuda, Kouki
,
Maeda, Kenji
in
Acquired immune deficiency syndrome
,
Acquired Immunodeficiency Syndrome - drug therapy
,
AIDS
2024
Combination antiretroviral therapy (cART) has significantly improved the prognosis of individuals living with human immunodeficiency virus (HIV). Acquired immunodeficiency syndrome has transformed from a fatal disease to a treatable chronic infection. Currently, effective and safe anti-HIV drugs are available. Although cART can reduce viral production in the body of the patient to below the detection limit, it cannot eliminate the HIV provirus integrated into the host cell genome; hence, the virus will be produced again after cART discontinuation. Therefore, research into a cure (or remission) for HIV has been widely conducted. In this review, we focus on drug development targeting cells latently infected with HIV and assess the progress including our current studies, particularly in terms of the “Shock and Kill”, and “Block and Lock” strategies.
Journal Article