Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
6,499
result(s) for
"lc-ms"
Sort by:
IQ consortium perspective: complementary LBA and LC–MS in protein therapeutics bioanalysis and biotransformation assessment
2020
Increasingly diverse large molecule modalities have driven the need for complex bioanalysis and biotransformation assessment involving both traditional ligand-binding assays (LBA) and more recent hybrid immunoaffinity LC–MS platforms. Given the scientific expertise in LBA and LC–MS typically resides in different functions within the industry, this has presented operational challenges for an integrated approach for bioanalysis and biotransformation assessment. Encouragingly, over time, the industry has recognized the complementary value of the two platforms. This has not been an easy transition as organizational structures vary widely within the industry. However, there are tremendous benefits in adopting fully integrated strategies for biopharma. This IQ consortium paper presents current perspectives across the biopharma industry. It highlights the technical and operational challenges in current large molecule bioanalysis, the value of collaborations across LBA and LC–MS, and scientific expertise for fully integrated strategies for bioanalysis and biotransformation.
Journal Article
Lysophosphatidylethanolamine Affects Lipid Accumulation and Metabolism in a Human Liver-Derived Cell Line
2022
The physiological functions of lysophosphatidylethanolamine (lysoPE) have not been fully elucidated. In this study, the effects of lysoPE on lipogenesis and lipolysis were investigated in a cultured human liver-derived cell line. The intracellular lipid profile was investigated in detail using liquid chromatography–tandem mass spectrometry (LC-MS/MS) to better understand the underlying mechanism. The expression of genes related to lipid metabolism and catabolism was analyzed using real-time PCR. LysoPE supplementation induced cellular lipid droplet formation and altered triacylglycerol (TAG) profiles. Furthermore, lysoPE downregulated expression of the TAG hydrolyzation regulation factor ATGL, and reduced the expression of fatty acid biosynthesis-related genes SREBP1 and SCD1. LC-MS/MS-based lipidomic profiling revealed that the addition of lysoPE 18:2 increased the PE species containing linoleic acyl, as well as the CE 18:2 species, likely due to the incorporation of linoleic acyl from lysoPE 18:2. Collectively, these findings suggest that lysoPE 18:2 is involved in lipid droplet formation by suppressing lipolysis and fatty acid biosynthesis. Thus, lysoPE might play a pathological role in the induction of fatty liver disease.
Journal Article
Ultra‐high sensitivity mass spectrometry quantifies single‐cell proteome changes upon perturbation
by
Thielert, Marvin
,
Hoerning, Ole B
,
Theis, Fabian J
in
Cell cycle
,
Chromatography
,
drug perturbation
2022
Single‐cell technologies are revolutionizing biology but are today mainly limited to imaging and deep sequencing. However, proteins are the main drivers of cellular function and in‐depth characterization of individual cells by mass spectrometry (MS)‐based proteomics would thus be highly valuable and complementary. Here, we develop a robust workflow combining miniaturized sample preparation, very low flow‐rate chromatography, and a novel trapped ion mobility mass spectrometer, resulting in a more than 10‐fold improved sensitivity. We precisely and robustly quantify proteomes and their changes in single, FACS‐isolated cells. Arresting cells at defined stages of the cell cycle by drug treatment retrieves expected key regulators. Furthermore, it highlights potential novel ones and allows cell phase prediction. Comparing the variability in more than 430 single‐cell proteomes to transcriptome data revealed a stable‐core proteome despite perturbation, while the transcriptome appears stochastic. Our technology can readily be applied to ultra‐high sensitivity analyses of tissue material, posttranslational modifications, and small molecule studies from small cell counts to gain unprecedented insights into cellular heterogeneity in health and disease.
Synopsis
A new ultra‐high sensitivity LC‐MS workflow increases sensitivity by up to two orders of magnitude and enables true single‐cell proteome analysis. In‐depth comparison indicates that the single‐cell transcriptome is stochastic while the single‐cell proteome is complete and stable.
A highly optimized data independent acquisition powered single‐cell proteomics workflow including sub‐µl sample preparation, very low flow chromatography and trapped ion mobility mass spectrometry (diaPASEF) is presented.
Single‐cell proteome analysis is performed by injecting cells one‐by‐one across the cell cycle into the LC‐MS and correctly identifies cell states.
Single‐cell proteome information is highly complementary to single‐cell transcriptome information.
At the single‐cell level the proteome is quantitatively and qualitatively stable, while the transcriptome is stochastic.
Graphical Abstract
A new ultra‐high sensitivity LC‐MS workflow increases sensitivity by up to two orders of magnitude and enables true single‐cell proteome analysis. In‐depth comparison indicates that the single‐cell transcriptome is stochastic while the single‐cell proteome is complete and stable.
Journal Article
Fast and Accurate Protein False Discovery Rates on Large-Scale Proteomics Data Sets with Percolator 3.0
by
MacCoss, Michael J.
,
Noble, William S.
,
The, Matthew
in
Analytical Chemistry
,
Bioinformatics
,
Biotechnology
2016
Percolator is a widely used software tool that increases yield in shotgun proteomics experiments and assigns reliable statistical confidence measures, such as
q
values and posterior error probabilities, to peptides and peptide-spectrum matches (PSMs) from such experiments. Percolator’s processing speed has been sufficient for typical data sets consisting of hundreds of thousands of PSMs. With our new scalable approach, we can now also analyze millions of PSMs in a matter of minutes on a commodity computer. Furthermore, with the increasing awareness for the need for reliable statistics on the protein level, we compared several easy-to-understand protein inference methods and implemented the best-performing method—grouping proteins by their corresponding sets of theoretical peptides and then considering only the best-scoring peptide for each protein—in the Percolator package. We used Percolator 3.0 to analyze the data from a recent study of the draft human proteome containing 25 million spectra (PM:24870542). The source code and Ubuntu, Windows, MacOS, and Fedora binary packages are available from
http://percolator.ms/
under an Apache 2.0 license.
Graphical Abstract
ᅟ
Journal Article
“Notame”: Workflow for Non-Targeted LC–MS Metabolic Profiling
by
Zarei, Iman
,
Koistinen, Ville M.
,
Kärkkäinen, Olli
in
Computational statistical
,
LC-MS
,
Mass spectrometry
2020
Metabolomics analysis generates vast arrays of data, necessitating comprehensive workflows involving expertise in analytics, biochemistry and bioinformatics in order to provide coherent and high-quality data that enable discovery of robust and biologically significant metabolic findings. In this protocol article, we introduce notame, an analytical workflow for non-targeted metabolic profiling approaches, utilizing liquid chromatography–mass spectrometry analysis. We provide an overview of lab protocols and statistical methods that we commonly practice for the analysis of nutritional metabolomics data. The paper is divided into three main sections: the first and second sections introducing the background and the study designs available for metabolomics research and the third section describing in detail the steps of the main methods and protocols used to produce, preprocess and statistically analyze metabolomics data and, finally, to identify and interpret the compounds that have emerged as interesting.
Journal Article
Determination of Polyphenols Using Liquid Chromatography–Tandem Mass Spectrometry Technique (LC–MS/MS): A Review
by
López-Fernández, Olalla
,
Pateiro, Mirian
,
Lorenzo, José M.
in
analytical methods
,
anthocyanins
,
electrospray ionization
2020
In recent years, the consumption of polyphenols has been increasing, largely due to its beneficial effects on health. They are present in a wide variety of foods, but their extraction and characterization are complicated since they are mostly in complex matrices. For this reason, the use of selective, sensitive, and versatile analytical techniques such as liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS) is necessary. In this review, the most relevant studies of the last years regarding the analysis of polyphenols in different matrices by comprehensive LC–MS/MS are discussed. Relevant steps such as extraction, sample purification, and chromatographic analysis methods are emphasized. In particular, the following methodological aspects are discussed: (a) the proper selection of the extraction technique, (b) the extraction and elution solvents, (c) the purification step, (d) the selection of both stationary and mobile phases for the chromatographic separation of compounds, and (e) the different conditions for mass spectrometry. Overall, this review presents the data from the most recent studies, in a comprehensive way, thus providing and simplifying the information of the great variety of works that exist in the literature on this wide topic.
Journal Article
On the Identification and Quantification of Ergothioneine and Lovastatin in Various Mushroom Species: Assets and Challenges of Different Analytical Approaches
by
Siapi, Eleni
,
Zervakis, Georgios I.
,
Koutrotsios, Georgios
in
Agaricus - chemistry
,
Bioavailability
,
Biosynthesis
2021
In recent years, mushrooms have drawn the attention of agro-industries and food-industries as they were considered to be valuable natural sources of health promoting compounds such as β-glucans, ergothioneine, and lovastatin. The detection and quantification of such compounds by implementing reliable analytical approaches is of the utmost importance in order to adjust mushrooms’ cultivation conditions and maximize the production in different species. Toward this direction, the current study focuses on the comparison of ultraviolet–visible (UV–Vis) spectrometry and liquid chromatography–mass spectrometry (LC–MS) methods (a) by evaluating the content of ergothioneine and lovastatin in mushrooms and (b) by highlighting any possible substrate-based interferences that hinder the accurate determination of these two compounds in order to propose the technique-of-choice for a standardized bioactive compounds monitoring. For this purpose, mushrooms produced by three species (i.e., Agaricus bisporus, Pleurotus ostreatus, and P. citrinopileatus) on various cultivation substrates, namely wheat straw (WS), winery (grape marc (GM)), and olive oil (OL) by-products, were examined. Among the two applied techniques, the developed and validated LC–MS methods, exhibiting relatively short analysis time and higher resolution, emerge as the methods-of-choice for detecting ergothioneine and lovastatin in mushrooms. On the contrary, UV–Vis methods were hindered due to co-absorbance of different constituents, resulting in invalid results. Among the studied mushrooms, P. citrinopileatus contained the highest amount of ergothioneine (822.1 ± 20.6 mg kg−1 dry sample), whereas A. bisporus contained the highest amounts of lovastatin (1.39 ± 0.014 mg kg−1 dry sample). Regarding the effect of different cultivation substrates, mushrooms produced on OL and WS contained the highest amount of ergothioneine, while mushrooms deriving from GM-based substrates contained the highest amount of lovastatin.
Journal Article
Advances in Analysis and Detection of Major Mycotoxins in Foods
by
Agriopoulou, Sofia
,
Stamatelopoulou, Eygenia
,
Varzakas, Theodoros
in
analysis
,
aptamer
,
Biosensors
2020
Mycotoxins are the most widely studied biological toxins, which contaminate foods at very low concentrations. This review describes the emerging extraction techniques and the current and alternatives analytical techniques and methods that have been used to successfully detect and identify important mycotoxins. Some of them have proven to be particularly effective in not only the detection of mycotoxins, but also in detecting mycotoxin-producing fungi. Chromatographic techniques such as high-performance liquid chromatography coupled with various detectors like fluorescence, diode array, UV, liquid chromatography coupled with mass spectrometry, and liquid chromatography-tandem mass spectrometry, have been powerful tools for analyzing and detecting major mycotoxins. Recent progress of the development of rapid immunoaffinity-based detection techniques such as immunoassays and biosensors, as well as emerging technologies like proteomic and genomic methods, molecular techniques, electronic nose, aggregation-induced emission dye, quantitative NMR and hyperspectral imaging for the detection of mycotoxins in foods, have also been presented.
Journal Article
Phytochemical profile and antioxidant activity of Juglans regia L. green husk extracts from Tuyserkan region, Iran
by
Alam, Md. Khorshed
,
Baseri, Hadi
,
HosseiniHashemi, Seyyed Khalil
in
antioxidant activity
,
chemical composition
,
extracts
2025
Green husk is a byproduct of the walnut (Juglans regia L.) and could be a potential source of phytochemicals with important bioactivities. The extracts of J. regia L. green husk collected from the Tuyserkan region of Hamedan province were evaluated for their phytochemical profile and antioxidant activities. The chemical composition of crude extracts was analyzed by liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS). LC-MS analysis of green husk aqueous methanolic extract detected several compounds including phenolic acids, flavonoids, and hydrolyzable tannins. GC-MS analysis of the methanolic extracts revealed the presence of 1,2-dimethylbenzene (3.4%), methyl 14-methylpentadecanoate (2.82%), and methyl stearate (2.7%) as major compounds. The major components identified in the GC-MS analysis of non-polar hexane extract were (23S)-ethylcholest-5-en-3-β-ol (32.2%), δ-tocopherol (16.8%), lupeol (11.8%), and octadecane (5.7%). The antioxidant activity of the crude extracts was evaluated by DPPH assay, which showed aqueous methanol extract to be a more effective antioxidant agent (22.7%) compared to the hexane extract (14%) at the concentration of 1000 ppm. The findings suggest that methanolic extracts of walnut green husks from the Tuyserkan region are rich in bioactive compounds and exhibit more potent antioxidant activity than hexane extracts, demonstrating their potential use in pharmaceutical and food industries.
Journal Article
Production, characterization, and antifungal activity of a biosurfactant produced by Rhodotorula babjevae YS3
by
Bora, Arijit
,
Deka, Suresh
,
Sen, Suparna
in
Agricultural land
,
Antifungal activity
,
Antifungal agents
2017
Background
Sophorolipids are one of the most promising glycolipid biosurfactants and have been successfully employed in bioremediation and various other industrial sectors. They have also been described to exhibit antimicrobial activity against different bacterial species. Nevertheless, previous literature pertaining to the antifungal activity of sophorolipids are limited indicating the need for further research to explore novel strains with wide antimicrobial activity. A novel yeast strain,
Rhodotorula babjevae
YS3, was recently isolated from an agricultural field in Assam, Northeast India. This study was primarily emphasized at the characterization and subsequent evaluation of antifungal activity of the sophorolipid biosurfactant produced by
R. babjevae
YS3.
Results
The growth kinetics and biosurfactant production by
R. babjevae
YS3 was evaluated by cultivation in Bushnell-Haas medium containing glucose (10% w/v) as the sole carbon source. A reduction in the surface tension of the culture medium from 70 to 32.6 mN/m was observed after 24 h. The yield of crude biosurfactant was recorded to be 19.0 g/l which might further increase after optimization of the growth parameters. The biosurfactant was characterized to be a heterogeneous sophorolipid (SL) with both lactonic and acidic forms after TLC, FTIR and LC–MS analyses. The SL exhibited excellent oil spreading and emulsifying activity against crude oil at 38.46 mm
2
and 100% respectively. The CMC was observed to be 130 mg/l. The stability of the SL was evaluated over a wide range of pH (2–10), salinity (2–10% NaCl) and temperature (at 120 °C for time intervals of 30 up to 120 min). The SL was found to retain surface-active properties under the extreme conditions. Additionally, the SL exhibited promising antifungal activity against a considerably broad group of pathogenic fungi viz.
Colletotrichum gloeosporioides
,
Fusarium verticilliodes
,
Fusarium oxysporum
f. sp.
pisi
,
Corynespora cassiicola
, and
Trichophyton rubrum
.
Conclusions
The study reports, for the first time, the biosurfactant producing ability of
R. babjevae,
a relatively lesser studied yeast. The persistent surface active properties of the sophorolipid in extreme conditions advocates its applicability in diverse environmental and industrial sectors. Further, antifungal activities against plant and human pathogens opens up possibilities for development of efficient and eco-friendly antifungal agents with agricultural and biomedical applications.
Journal Article