Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
10 result(s) for "leaf crinkle"
Sort by:
Leaf crinkle disease in urdbean (Vigna mungo L. Hepper): An overview on causal agent, vector and host
Urdbean leaf crinkle disease (ULCD) is an economically significant widespread and devastating disease resulting in extreme crinkling, puckering and rugosity of leaves inflicting heavy yield losses annually in major urdbean-producing countries of the world. This disease is caused by urdbean leaf crinkle virus (ULCV). Urdbean (Vigna mungo L. Hepper) is relatively more susceptible than other pulses to leaf crinkle disease. Urdbean is an important and useful crop cultivated in various parts of South-East Asia and well adapted for cultivation under semi-arid and subtropical conditions. Aphids, insects and whiteflies have been reported as vectors of the disease. The virus is also transmitted through sap inoculation, grafting and seed. The loss in seed yield in ULCD-affected urdbean crop ranges from 35 to 81 %, which is dependent upon type of genotype location and infection time. The diseased material and favourable climatic conditions contribute for the widespread viral disease. Anatomical and biochemical changes take place in the affected diseased plants. Genetic variations have been reported in the germplasm screening which suggest continuous screening of available varieties and new germplasm to search for new traits (new genes) and identify new sources of disease resistance. There are very few reports on breeding programmes for the development and release of varieties tolerant to ULCD. Mostly random amplified polymorphic DNA (RAPD) as well as inter-simple sequence repeat (ISSR) molecular markers have been utilized for fingerprinting of blackgram, and a few reports are there on sequence-tagged micro-satellite site (STMS) markers. There are so many RNA viruses which have also developed strategies to counteract silencing process by encoding suppressor proteins that create hindrances in the process. But, in the case of ULCV, there is no report available indicating which defence pathway is operating for its resistance in the plants and whether same silencing suppression strategy is also followed by this virus causing leaf crinkle disease in urdbean. The antiviral principles (AVP) present in leaf extracts of several plants are known to inhibit infection by many viruses. Many chemicals have been reported as inhibitors of virus replication in plants. Raising the barrier crops also offers an effective solution to control the spread of virus.
V2 Protein Enhances the Replication of Genomic DNA of Mulberry Crinkle Leaf Virus
Mulberry crinkle leaf virus (MCLV), identified in mulberry plants (Morus alba L.), is a member of the genus Mulcrilevirus in the family Geminiviridae. The functions of the V2 protein encoded by MCLV remain unclear. Here, Agrobacterium-mediated infectious clones of a wild-type MCLV vII (MCLVWT) and two V2 mutant MCLV vIIs, including MCLVmV2 (with a mutation of the start codon of the V2 ORF) and MCLVdV2 (5′-end partial deletion of the V2 ORF sequence), were constructed to investigate the roles of V2 both in planta and at the cellular level. Although all three constructs (pCA-1.1MCLVWT, pCA-MCLVmV2, and pCA-MCLVdV2) were able to infect both natural host mulberry plants and experimental tomato plants systematically, the replication of the MCLVmV2 and MCLVdV2 genomes in these hosts was significantly reduced compared to that of MCLVWT. Similarly, the accumulation of MCLVmV2 and MCLVdV2 in protoplasts of Nicotiana benthamiana plants was significantly lower than that of MCLVWT either 24 h or 48 h post-transfection. A complementation experiment further confirmed that the decreased accumulation of MCLV in the protoplasts was due to the absence of V2 expression. These results revealed that MCLV-encoded V2 greatly enhances the level of MCLV DNA accumulation and is designated the replication enhancer protein of MCLV.
Urdbean Leaf Crinkle Virus: A Mystery Waiting to Be Solved
Urdbean leaf crinkle disease (ULCD) affects mainly the urdbean or blackgram (Vigna mungo (L.) Hepper) causing distinct symptoms that often result in serious yield losses. It has been known to occur for more than five decades and is considered to be of viral etiology. The identity of the causal agent, often referred to as the urdbean leaf crinkle virus, is not unequivocally proved. There are few attempts to characterize the causal agent of ULCD; however, there is no unanimity in the results. Recent attempts to characterize the causal agent of ULCD using next-generation sequencing of the virome of ULCD-affected urdbean plants indicated the involvement of cowpea mild mottle virus; however, without conforming through Koch’s postulates, the etiology of ULCD remains inconclusive. Claims of different insect vectors involved in the transmission of ULCD make this disease even more mysterious. The information available so far indicates that either two different viruses are causing ULCD or a mixture of viruses is involved. The identity of the virus/es causing ULCD still remains to be unambiguously ascertained. In this review, we attempt to analyze information on the various aspects of ULCD.
V3 protein encoded by mulberry crinkle leaf virus acts as a pathogenicity determinant in Nicotiana benthamiana
A potential pathogenicity determinant and its critical amino acid (aa) sequences of mulberry crinkle leaf virus (MCLV) were determined through expression of MCLV genes in Nicotiana benthamiana using a potato virus X (PVX) vector. Among six genes encoded by MCLV, expression of only V3 resulted in a severe downward-leaf-curling symptom in newly emerging leaves of N. benthamiana plants, which suggested that the V3 protein is a pathogenicity determinant of MCLV. Analyses of truncation mutations indicated that the 94 residues at the N terminus of V3 are sufficient to maintain the function of the pathogenicity determinant V3 in N. benthamiana.
RAPD assisted selection of black gram (Vigna mungo L. Hepper) towards the development of multiple disease resistant germplasm
Black gram ( Vigna mungo L. Hepper), is an extensively studied food crop which is affected by many abiotic and biotic factors, especially diseases. The yield potential of Black gram is shallow due to lack of genetic variability and biotic stress susceptibility. Core biotic stress factors include mung bean yellow mosaic virus (MYMV), urdbean leaf crinkle virus (UCLV), wilt ( Fusarium oxysporum ) and powdery mildew ( Erysiphe polygoni DC ). Although many studies determine resistant varieties to a particular disease, however, it is often complimented by low yield and susceptibility to other diseases. Hence, this study focuses on investigating the genetic relationships among three varieties and nine accessions of black gram having disease resistance to previously described diseases and susceptibility using random amplified polymorphic deoxyribonucleic acid (RAPD) markers. A total of 33 RAPD primers were used for diversity analysis and yielded 206 fragments. Number of amplified fragments ranged from two (OPN-1) to 13 (OPF-1). The highest similarity coefficient was observed between IC-145202 and IC-164118 (0.921), while lowest similarity was between PU-31 and IC-145202 (0.572). The genetic diversity obtained in this study along with disease analysis suggests PU31as a useful variety for the development of markers linked to MYMV, UCLV, wilt and powdery mildew resistance by marker-assisted back cross breeding and facilitates the production of crosses with multiple disease resistance.
CHEMICAL AND BOTANICAL MANAGEMENT OF LEAF CRINKLE VIRUS DISEASE OF GREENGRAM
Greengram is grown mainly as a Kharif seasoncrop which suffers from several diseases caused by both fungi and viruses.Among the viral diseases, leaf crinkle is an important disease that infects thecrop at various stages of its growth which reduces both quantity and quality ofthe seed. Effective management of insect vectors of plant pathogens is ofcrucial importance in minimizing vector-borne diseases in crops. Among thevarious treatments tested for managing the leaf crinkle virus disease, seedtreatment with imidacloprid 60 FS (5 ml/kg) along with two sprays ofimidacloprid 17.8 SL (0.03%) at 25 and 40 days after sowing was found highlyeffective and recorded the lowest per cent disease incidence and least numberof aphids.
Isolation and molecular characterization of a distinct begomovirus and its associated betasatellite infecting Hedyotis uncinella (Hook. et Arn.) in Vietnam
A begomovirus isolate VN1 associated with symptomatic Hedyotis uncinella Hook. et Arn. from Vietnam was characterized. The virus, which we provisionally name H. uncinella yellow mosaic virus (HUYMV), has a monopartite genome of 2,749 nucleotides (nts). Pairwise comparisons of DNA-A sequences showed that HUYMV had a maximum nt sequence identity with Soybean crinkle leaf virus (SbLCV) and Premna leaf curl virus (PLCuV) at 82.1 and 81.9 %, respectively, which are less than the 89 % identity in the complete genome, which has been used as the threshold value for demarcation of species in the genus Begomovirus, the family Geminiviridae. One recombination event was detected for HUYMV, which involves an unknown begomovirus as the major parent and Tomato leaf curl Philippines virus (ToLCPV) as the minor parent, with nt 2163 and nt 2452 as the beginning and ending breakpoints, respectively. A betasatellite was found to be associated with HUYMV. The betasatellite showed the highest nt sequence identity (70 %) with Tomato leaf curl Philippine betasatellite—[Philippines:Laguna2:2006]. The name H. uncinella yellow mosaic betasatellite [Vietnam: Binh Dinh: 2013] was proposed for the betasatellite.
Odontoglossum ringspot virus causing flower crinkle in Phalaenopsis hybrids
A new disorder exhibiting flower crinkle on Phalaenopsis orchids bearing white flowers has been observed in Taiwan, China and Japan for several years. This disorder decreased the flower longevity and was considered as a physiological syndrome. The objective of this study was to identify and characterize the real causal agent of this new Phalaenopsis disorder. Five plants of Phalaenopsis hybrids “V3” (Phal. Yukimai × Phal. Taisuco Kochdian) with flower crinkle symptoms were collected and tested by enzyme-linked immunosorbent assay with antisera against 18 viruses. The extract of leaves and flowers from one diseased plant (96-Ph-16) reacted positively only to antiserum against Odontoglossum ringspot virus (ORSV), while those from the other four plants (96-Ph-7, 96-Ph-17, 96-Ph-18 and 96-Ph-19) reacted positively to the antisera against ORSV and Cymbidium mosaic virus (CymMV). Five ORSV isolates, one each from flowers of those five diseased Phalaenopsis orchids, were established in Chenopodium quinoa. A CymMV culture was isolated from the flowers of one of the ORSV/CymMV mix-infected Phalaenopsis orchids (96-Ph-19). To determine the causal agent of the flower crinkle disease, healthy Phalaenopsis seedlings were singly or doubly inoculated with the isolated ORSV and/or CymMV. Results of back inoculation indicated that ORSV is the sole causal agent of the crinkle symptom on petals of Phalaenopsis orchid. The CP gene of the ORSV isolates from this study shared 97.3-100% nucleotide identity and 96.2-100% amino acid identity with those of 41 ORSV isolates available in GenBank. This is the first report demonstrating ORSV as the sole virus causing flower crinkle disease on Phalaenopsis orchids.
Characterization of a new strain of Eggplant mottled crinkle virus (EMCV) infecting eggplants in Israel
Eggplant ( Solanum melongena ), which is grown worldwide, is cultivated all year round in Israel. We report on the outbreak of a new viral disease infecting eggplants in Israel, which causes significant damage due to plant stunting, leaf mottling and narrowing, accompanied by fruit malformation. Virus purification from the infected plants yielded isometric particles, 37–40 nm in diameter. Biological and molecular characterization of the viral agent indicates that it is a new strain of the Eggplant mottled crinkle virus (EMCV-Is) that has been assigned to the Tombusvirus genus. Phylogenetic analysis indicated a close relationship of EMCV with Pear latent virus (PeLV) and Lisianthus necrosis virus (LNV), which can be considered strains of EMCV rather than distinct viruses.