Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
13 result(s) for "leaf-counting"
Sort by:
Real-Time Plant Leaf Counting Using Deep Object Detection Networks
The use of deep neural networks (DNNs) in plant phenotyping has recently received considerable attention. By using DNNs, valuable insights into plant traits can be readily achieved. While these networks have made considerable advances in plant phenotyping, the results are processed too slowly to allow for real-time decision-making. Therefore, being able to perform plant phenotyping computations in real-time has become a critical part of precision agriculture and agricultural informatics. In this work, we utilize state-of-the-art object detection networks to accurately detect, count, and localize plant leaves in real-time. Our work includes the creation of an annotated dataset of Arabidopsis plants captured using Cannon Rebel XS camera. These images and annotations have been complied and made publicly available. This dataset is then fed into a Tiny-YOLOv3 network for training. The Tiny-YOLOv3 network is then able to converge and accurately perform real-time localization and counting of the leaves. We also create a simple robotics platform based on an Android phone and iRobot create2 to demonstrate the real-time capabilities of the network in the greenhouse. Additionally, a performance comparison is conducted between Tiny-YOLOv3 and Faster R-CNN. Unlike Tiny-YOLOv3, which is a single network that does localization and identification in a single pass, the Faster R-CNN network requires two steps to do localization and identification. While with Tiny-YOLOv3, inference time, F1 Score, and false positive rate (FPR) are improved compared to Faster R-CNN, other measures such as difference in count (DiC) and AP are worsened. Specifically, for our implementation of Tiny-YOLOv3, the inference time is under 0.01 s, the F1 Score is over 0.94, and the FPR is around 24%. Last, transfer learning using Tiny-YOLOv3 to detect larger leaves on a model trained only on smaller leaves is implemented. The main contributions of the paper are in creating dataset (shared with the research community), as well as the trained Tiny-YOLOv3 network for leaf localization and counting.
Weed Growth Stage Estimator Using Deep Convolutional Neural Networks
This study outlines a new method of automatically estimating weed species and growth stages (from cotyledon until eight leaves are visible) of in situ images covering 18 weed species or families. Images of weeds growing within a variety of crops were gathered across variable environmental conditions with regards to soil types, resolution and light settings. Then, 9649 of these images were used for training the computer, which automatically divided the weeds into nine growth classes. The performance of this proposed convolutional neural network approach was evaluated on a further set of 2516 images, which also varied in term of crop, soil type, image resolution and light conditions. The overall performance of this approach achieved a maximum accuracy of 78% for identifying Polygonum spp. and a minimum accuracy of 46% for blackgrass. In addition, it achieved an average 70% accuracy rate in estimating the number of leaves and 96% accuracy when accepting a deviation of two leaves. These results show that this new method of using deep convolutional neural networks has a relatively high ability to estimate early growth stages across a wide variety of weed species.
Lightweight Corn Leaf Detection and Counting Using Improved YOLOv8
The number of maize leaves is an important indicator for assessing plant growth and regulating population structure. However, the traditional leaf counting method mainly relies on manual work, which is both time-consuming and straining, while the existing image processing methods have low accuracy and poor adaptability, making it difficult to meet the standards for practical application. To accurately detect the growth status of maize, an improved lightweight YOLOv8 maize leaf detection and counting method was proposed in this study. Firstly, the backbone of the YOLOv8 network is replaced using the StarNet network and the convolution and attention fusion module (CAFM) is introduced, which combines the local convolution and global attention mechanisms to enhance the ability of feature representation and fusion of information from different channels. Secondly, in the neck network part, the StarBlock module is used to improve the C2f module to capture more complex features while preserving the original feature information through jump connections to improve training stability and performance. Finally, a lightweight shared convolutional detection head (LSCD) is used to reduce repetitive computations and improve computational efficiency. The experimental results show that the precision, recall, and mAP50 of the improved model are 97.9%, 95.5%, and 97.5%, and the numbers of model parameters and model size are 1.8 M and 3.8 MB, which are reduced by 40.86% and 39.68% compared to YOLOv8. This study shows that the model improves the accuracy of maize leaf detection, assists breeders in making scientific decisions, provides a reference for the deployment and application of maize leaf number mobile end detection devices, and provides technical support for the high-quality assessment of maize growth.
A Segmentation-Guided Deep Learning Framework for Leaf Counting
Deep learning-based methods have recently provided a means to rapidly and effectively extract various plant traits due to their powerful ability to depict a plant image across a variety of species and growth conditions. In this study, we focus on dealing with two fundamental tasks in plant phenotyping, i.e., plant segmentation and leaf counting, and propose a two-steam deep learning framework for segmenting plants and counting leaves with various size and shape from two-dimensional plant images. In the first stream, a multi-scale segmentation model using spatial pyramid is developed to extract leaves with different size and shape, where the fine-grained details of leaves are captured using deep feature extractor. In the second stream, a regression counting model is proposed to estimate the number of leaves without any pre-detection, where an auxiliary binary mask from segmentation stream is introduced to enhance the counting performance by effectively alleviating the influence of complex background. Extensive pot experiments are conducted CVPPP 2017 Leaf Counting Challenge dataset, which contains images of Arabidopsis and tobacco plants. The experimental results demonstrate that the proposed framework achieves a promising performance both in plant segmentation and leaf counting, providing a reference for the automatic analysis of plant phenotypes.
Leaf-Counting in Monocot Plants Using Deep Regression Models
Leaf numbers are vital in estimating the yield of crops. Traditional manual leaf-counting is tedious, costly, and an enormous job. Recent convolutional neural network-based approaches achieve promising results for rosette plants. However, there is a lack of effective solutions to tackle leaf counting for monocot plants, such as sorghum and maize. The existing approaches often require substantial training datasets and annotations, thus incurring significant overheads for labeling. Moreover, these approaches can easily fail when leaf structures are occluded in images. To address these issues, we present a new deep neural network-based method that does not require any effort to label leaf structures explicitly and achieves superior performance even with severe leaf occlusions in images. Our method extracts leaf skeletons to gain more topological information and applies augmentation to enhance structural variety in the original images. Then, we feed the combination of original images, derived skeletons, and augmentations into a regression model, transferred from Inception-Resnet-V2, for leaf-counting. We find that leaf tips are important in our regression model through an input modification method and a Grad-CAM method. The superiority of the proposed method is validated via comparison with the existing approaches conducted on a similar dataset. The results show that our method does not only improve the accuracy of leaf-counting, with overlaps and occlusions, but also lower the training cost, with fewer annotations compared to the previous state-of-the-art approaches.The robustness of the proposed method against the noise effect is also verified by removing the environmental noises during the image preprocessing and reducing the effect of the noises introduced by skeletonization, with satisfactory outcomes.
Leaf Counting: Fusing Network Components for Improved Accuracy
Leaf counting in potted plants is an important building block for estimating their health status and growth rate and has obtained increasing attention from the visual phenotyping community in recent years. Two novel deep learning approaches for visual leaf counting tasks are proposed, evaluated, and compared in this study. The first method performs counting via direct regression but using multiple image representation resolutions to attend leaves of multiple scales. The leaf count from multiple resolutions is fused using a novel technique to get the final count. The second method is detection with a regression model that counts the leaves after locating leaf center points and aggregating them. The algorithms are evaluated on the Leaf Counting Challenge (LCC) dataset of the Computer Vision Problems in Plant Phenotyping (CVPPP) conference 2017, and a new larger dataset of banana leaves. Experimental results show that both methods outperform previous CVPPP LCC challenge winners, based on the challenge evaluation metrics, and place this study as the state of the art in leaf counting. The detection with regression method is found to be preferable for larger datasets when the center-dot annotation is available, and it also enables leaf center localization with a 0.94 average precision. When such annotations are not available, the multiple scale regression model is a good option.
Plant Leaf Detection and Counting in a Greenhouse during Day and Nighttime Using a Raspberry Pi NoIR Camera
A non-destructive method using machine vision is an effective way to monitor plant growth. However, due to the lighting changes and complicated backgrounds in outdoor environments, this becomes a challenging task. In this paper, a low-cost camera system using an NoIR (no infrared filter) camera and a Raspberry Pi module is employed to detect and count the leaves of Ramie plants in a greenhouse. An infrared camera captures the images of leaves during the day and nighttime for a precise evaluation. The infrared images allow Otsu thresholding to be used for efficient leaf detection. A combination of numbers of thresholds is introduced to increase the detection performance. Two approaches, consisting of static images and image sequence methods are proposed. A watershed algorithm is then employed to separate the leaves of a plant. The experimental results show that the proposed leaf detection using static images achieves high recall, precision, and F1 score of 0.9310, 0.9053, and 0.9167, respectively, with an execution time of 551 ms. The strategy of using sequences of images increases the performances to 0.9619, 0.9505, and 0.9530, respectively, with an execution time of 516.30 ms. The proposed leaf counting achieves a difference in count (DiC) and absolute DiC (ABS_DiC) of 2.02 and 2.23, respectively, with an execution time of 545.41 ms. Moreover, the proposed method is evaluated using the benchmark image datasets, and shows that the foreground–background dice (FBD), DiC, and ABS_DIC are all within the average values of the existing techniques. The results suggest that the proposed system provides a promising method for real-time implementation.
Maize Seedling Leave Counting Based on Semi-Supervised Learning and UAV RGB Images
The number of leaves in maize seedlings is an essential indicator of their growth rate and status. However, manual counting of seedlings is inefficient and limits the scope of the investigation. Deep learning has shown potential for quickly identifying seedlings, but it requires larger, labeled datasets. To address these challenges, we proposed a method for counting maize leaves from seedlings in fields using a combination of semi-supervised learning, deep learning, and UAV digital imagery. Our approach leveraged semi-supervised learning and novel methods for detecting and counting maize seedling leaves accurately and efficiently. Specifically, we used a small amount of labeled data to train the SOLOv2 model based on the semi-supervised learning framework Noisy Student. This model can segment complete maize seedlings from UAV digital imagery and generate foreground images of maize seedlings with background removal. We then trained the YOLOv5x model based on Noisy Student with a small amount of labeled data to detect and count maize leaves. We divided our dataset of 1005 images into 904 training images and 101 testing images, and randomly divided the 904 training images into four sets of labeled and unlabeled data with proportions of 4:6, 3:7, 2:8, and 1:9, respectively. The results indicated that the SOLOv2 Resnet101 outperformed the SOLOv2 Resnet50 in terms of segmentation performance. Moreover, when the labeled proportion was 30%, the student model SOLOv2 achieved a similar segmentation performance to the fully supervised model with a mean average precision (mAP) of 93.6%. When the labeled proportion was 40%, the student model YOLOv5x demonstrated comparable leaf counting performance to the fully supervised model. The model achieved an average precision of 89.6% and 57.4% for fully unfolded leaves and newly appearing leaves, respectively, with counting accuracy rates of 69.4% and 72.9%. These results demonstrated that our proposed method based on semi-supervised learning and UAV imagery can advance research on crop leaf counting in fields and reduce the workload of data annotation.
Spanning trees for many different numbers of leaves
Let$G$be a connected graph and$L(G)$the set of all integers$k$such that$G$contains a spanning tree with exactly$k$leaves. We show that for a connected graph$G$ , the set$L(G)$is contiguous. It follows from work of Chen, Ren, and Shan that every connected and locally connected$n$ -vertex graph -- this includes triangulations -- has a spanning tree with at least$n/2 + 1$leaves, so by a classic theorem of Whitney and our result, in any plane$4$ -connected$n$ -vertex triangulation one can find for any integer$k$which is at least$2$and at most$n/2 + 1$a spanning tree with exactly$k$leaves (and each of these trees can be constructed in polynomial time). We also prove that there exist infinitely many$n$such that there is a plane$4$ -connected$n$ -vertex triangulation containing a spanning tree with$2n/3$leaves, but no spanning tree with more than$2n/3$leaves.
A Robust and High-Accuracy Banana Plant Leaf Detection and Counting Method for Edge Devices in Complex Banana Orchard Environments
Leaves are the key organs in photosynthesis and nutrient production, and leaf counting is an important indicator of banana plant health and growth rate. However, in complex orchard environments, leaves often overlap, the background is cluttered, and illumination varies, making accurate segmentation and detection challenging. To address these issues, we propose a lightweight banana leaf detection and counting method deployable on embedded devices, which integrates a space–depth-collaborative reasoning strategy with multi-scale feature enhancement to achieve efficient and precise leaf identification and counting. For complex background interference and occlusion, we design a multi-scale attention guided feature enhancement mechanism that employs a Mixed Local Channel Attention (MLCA) module and a Self-Ensembling Attention Mechanism (SEAM) to strengthen local salient feature representation, suppress background noise, and improve discriminability under occlusion. To mitigate feature drift caused by environmental changes, we introduce a task-aware dynamic scale adaptive detection head (DyHead) combined with multi-rate depthwise separable dilated convolutions (DWR_Conv) to enhance multi-scale contextual awareness and adaptive feature recognition. Furthermore, to tackle instance differentiation and counting under occlusion and overlap, we develop a detection-guided space–depth position modeling method that, based on object detection, effectively models the distribution of occluded instances through space–depth feature description, outlier removal, and adaptive clustering analysis. Experimental results demonstrate that our YOLOv8n MDSD model outperforms the baseline by 2.08% in mAP50-95, and achieves a mean absolute error (MAE) of 0.67 and a root mean square error (RMSE) of 1.01 in leaf counting, exhibiting excellent accuracy and robustness for automated banana leaf statistics.