Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2 result(s) for "learning-based super-resolution reconstruction method"
Sort by:
Guided filter-based multi-scale super-resolution reconstruction
The learning-based super-resolution reconstruction method inputs a low-resolution image into a network, and learns a non-linear mapping relationship between low-resolution and high-resolution through the network. In this study, the multi-scale super-resolution reconstruction network is used to fuse the effective features of different scale images, and the non-linear mapping between low resolution and high resolution is studied from coarse to fine to realise the end-to-end super-resolution reconstruction task. The loss of some features of the low-resolution image will negatively affect the quality of the reconstructed image. To solve the problem of incomplete image features in low-resolution, this study adopts the multi-scale super-resolution reconstruction method based on guided image filtering. The high-resolution image reconstructed by the multi-scale super-resolution network and the real high-resolution image are merged by the guide image filter to generate a new image, and the newly generated image is used for secondary training of the multi-scale super-resolution reconstruction network. The newly generated image effectively compensates for the details and texture information lost in the low-resolution image, thereby improving the effect of the super-resolution reconstructed image.Compared with the existing super-resolution reconstruction scheme, the accuracy and speed of super-resolution reconstruction are improved.
Single image super-resolution: a comprehensive review and recent insight
Super-resolution (SR) is a long-standing problem in image processing and computer vision and has attracted great attention from researchers over the decades. The main concept of SR is to reconstruct images from low-resolution (LR) to high-resolution (HR).It is an ongoing process in image technology, through up-sampling, de-blurring, and de-noising. Convolution neural network (CNN) has been widely used to enhance the resolution of images in recent years. Several alternative methods use deep learning to improve the progress of image super-resolution based on CNN. Here, we review the recent findings of single image super-resolution using deep learning with an emphasis on distillation knowledge used to enhance image super-resolution., it is also to highlight the potential applications of image super-resolution in security monitoring, medical diagnosis, microscopy image processing, satellite remote sensing, communication transmission, the digital multimedia industry and video enhancement. Finally, we present the challenges and assess future trends in super-resolution based on deep learning.