Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
40 result(s) for "least absolute shrinkage and selection operator (LASSO) regression"
Sort by:
Suitability Analysis of Machine Learning Algorithms for Crack Growth Prediction Based on Dynamic Response Data
Machine learning has the potential to enhance damage detection and prediction in materials science. Machine learning also has the ability to produce highly reliable and accurate representations, which can improve the detection and prediction of damage compared to the traditional knowledge-based approaches. These approaches can be used for a wide range of applications, including material design; predicting material properties; identifying hidden relationships; and classifying microstructures, defects, and damage. However, researchers must carefully consider the appropriateness of various machine learning algorithms, based on the available data, material being studied, and desired knowledge outcomes. In addition, the interpretability of certain machine learning models can be a limitation in materials science, as it may be difficult to understand the reasoning behind predictions. This paper aims to make novel contributions to the field of material engineering by analyzing the compatibility of dynamic response data from various material structures with prominent machine learning approaches. The purpose of this is to help researchers choose models that are both effective and understandable, while also enhancing their understanding of the model’s predictions. To achieve this, this paper analyzed the requirements and characteristics of commonly used machine learning algorithms for crack propagation in materials. This analysis assisted the authors in selecting machine learning algorithms (K nearest neighbor, Ridge, and Lasso regression) to evaluate the dynamic response of aluminum and ABS materials, using experimental data from previous studies to train the models. The results showed that natural frequency was the most significant predictor for ABS material, while temperature, natural frequency, and amplitude were the most important predictors for aluminum. Crack location along samples had no significant impact on either material. Future work could involve applying the discussed techniques to a wider range of materials under dynamic loading conditions.
Wrangling Real-World Data: Optimizing Clinical Research Through Factor Selection with LASSO Regression
Data-driven approaches to clinical research are necessary for understanding and effectively treating infectious diseases. However, challenges such as issues with data validity, lack of collaboration, and difficult-to-treat infectious diseases (e.g., those that are rare or newly emerging) hinder research. Prioritizing innovative methods to facilitate the continued use of data generated during routine clinical care for research, but in an organized, accelerated, and shared manner, is crucial. This study investigates the potential of CURE ID, an open-source platform to accelerate drug-repurposing research for difficult-to-treat diseases, with COVID-19 as a use case. Data from eight US health systems were analyzed using least absolute shrinkage and selection operator (LASSO) regression to identify key predictors of 28-day all-cause mortality in COVID-19 patients, including demographics, comorbidities, treatments, and laboratory measurements captured during the first two days of hospitalization. Key findings indicate that age, laboratory measures, severity of illness indicators, oxygen support administration, and comorbidities significantly influenced all-cause 28-day mortality, aligning with previous studies. This work underscores the value of collaborative repositories like CURE ID in providing robust datasets for prognostic research and the importance of factor selection in identifying key variables, helping to streamline future research and drug-repurposing efforts.
Predictability comparison of sizing parameters for postoperative vault after implantable Collamer lens implantation
Purpose This study aims to assess the accuracy of three parameters (white-to-white distance [WTW], angle-to-angle [ATA], and sulcus-to-sulcus [STS]) in predicting postoperative vault and to formulate an optimized predictive model. Methods In this retrospective study, a cohort of 465 patients (comprising 769 eyes) who underwent the implantation of the V4c implantable Collamer lens with a central port (ICL) for myopia correction was examined. Least absolute shrinkage and selection operator (LASSO) regression and classification models were used to predict postoperative vault. The influences of WTW, ATA, and STS on predicting the postoperative vault and ICL size were analyzed and compared. Results The dataset was randomly divided into training (80%) and test (20%) sets, with no significant differences observed between them. The screened variables included only seven variables which conferred the largest signal in the model, namely, lens thickness (LT, estimated coefficients for logistic least absolute shrinkage of −0.20), STS (−0.04), size (0.08), flat K (−0.006), anterior chamber depth (0.15), spherical error (−0.006), and cylindrical error (−0.0008). The optimal prediction model depended on STS ( R 2 =0.419, RMSE=0.139), whereas the least effective prediction model relied on WTW ( R 2 =0.395, RMSE=0.142). In the classified prediction models of the vault, classification prediction of the vault based on STS exhibited superior accuracy compared to ATA or WTW. Conclusions This study compared the capabilities of WTW, ATA, and STS in predicting postoperative vault, demonstrating that STS exhibits a stronger correlation than the other two parameters.
Risk factors for hyponatremia in acute exacerbation chronic obstructive pulmonary disease (AECOPD): a multicenter cross-sectional study
Background Hyponatremia is an independent predictor of poor prognosis, including increased mortality and readmission, in COPD patients. Identifying modifiable etiologies of hyponatremia may help reduce adverse events in patients with AECOPD. Therefore, the aim of this study was to explore the risk factors and underlying etiologies of hyponatremia in AECOPD patients. Methods A total of 586 AECOPD patients were enrolled in this multicenter cross-sectional study. Finally, 323 had normonatremia, and 90 had hyponatremia. Demographics, underlying diseases, comorbidities, symptoms, and laboratory data were collected. The least absolute shrinkage and selection operator (LASSO) regression was used to select potential risk factors, which were substituted into binary logistic regression to identify independent risk factors. Nomogram was built to visualize and validate binary logistics regression model. Results Nine potential hyponatremia-associated variables were selected by LASSO regression. Subsequently, a binary logistic regression model identified that smoking status, rate of community-acquired pneumonia (CAP), anion gap (AG), erythrocyte sedimentation rate (ESR), and serum magnesium (Mg 2+ ) were independent variables of hyponatremia in AECOPD patients. The AUC of ROC curve of nomogram was 0.756. The DCA curve revealed that the nomogram could yielded more clinical benefits if the threshold was between 10% and 52%. Conclusions Collectively, our results showed that smoking status, CAP, AG, ESR, and serum Mg 2+ were independently associated with hyponatremia in AECOPD patients. Then, these findings indicate that pneumonia, metabolic acidosis, and hypomagnesemia were the underlying etiologies of hyponatremia in AECOPD patients. However, their internal connections need further exploration.
A Set of Global Metabolomic Biomarker Candidates to Predict the Risk of Dry Eye Disease
We used ultraperformance liquid chromatography coupled with quadrupole/time-of-flight tandem mass spectrometry (UPLC-Q/TOF-MS/MS) to analyze the metabolic profile of reflex tears obtained from patients with dry eye disorders. We performed a cross-sectional study involving 113 subjects: 85 patients diagnosed with dry eye syndrome (dry eye group) and 28 healthy volunteers (control group). Reflex tears (20-30 μl) were collected from the tear meniscus of both eyes of each subject using a Schirmer I test strip. MS data were acquired with a standard workflow by UPLC-Q/TOF-MS/MS. Metabolites were quantitatively analyzed and matched with entries in the Metlin, Massbank, and HMDB databases. Least absolute shrinkage and selection operator (LASSO) regression was conducted to detect important metabolites. Multiple logistic regression was used to identify the significant metabolic biomarker candidates for dry eye syndrome. Open database sources, including the Kyoto Encyclopedia of Genes and Genomes and MetaboAnalyst, were used to identify metabolic pathways. After the LASSO regression and multiple logistic regression analysis, 4 of 20 metabolic biomarker candidates were significantly correlated with Ocular Surface Disease Index score, 42 of 57 with fluorescein breakup time, and 26 of 57 with fluorescein staining. By focusing on the overlap of these three sets, 48 of 51 metabolites contributed to the incidence of dry eye and there were obvious changes in different age groups. Metabolic pathway analysis revealed that the main pathways were glucose metabolism, amino acid metabolism, and glutathione metabolism. Dry eye syndrome induces changes in the metabolic profile of tears, and the trend differs with age. This evidence reveals the relationship between changes in metabolites, symptoms of dry eye syndrome, and age.
Development and Validation of Artificial Neural Networks for Survival Prediction Model for Patients with Spontaneous Hepatocellular Carcinoma Rupture After Transcatheter Arterial Embolization
Spontaneous rupture bleeding is a fatal hepatocellular carcinoma (HCC) complication and a significant determinant of survival outcomes. This study aimed to develop and validate a novel artificial neural network (ANN)-based survival prediction model for patients with spontaneous HCC rupture after transcatheter arterial embolization (TAE). Patients with spontaneous HCC rupture bleeding who underwent TAE at our hospital between January 2010 and December 2018 were included in our study. The least absolute shrinkage and selection operator (LASSO) Cox regression model was used to screen clinical variables related to prognosis. We incorporated the above clinical variables identified by LASSO Cox regression into the ANNs model. Multilayer perceptron ANNs were used to develop the 1-year overall survival (OS) prediction model for patients with spontaneous HCC ruptured bleeding in the training set. The area under the receiver operating characteristic curve and decision curve analysis were used to compare the predictive capability of the ANNs model with that of existing conventional prediction models. The median survival time for the whole set was 11.8 months, and the 1-year OS rate was 47.5%. LASSO Cox regression revealed that sex, extrahepatic metastasis, macroscopic vascular invasion, tumor number, hepatitis B surface antigen, hepatitis B e antigen, tumor size, alpha-fetoprotein, fibrinogen, direct bilirubin, red blood cell, and γ-glutamyltransferase were risk factors for OS. An ANNs model with 12 input nodes, seven hidden nodes, and two corresponding prognostic outcomes was constructed. In the training set and the validation set, AUCs for the ability of the ANNs model to predict the 1-year OS of patients with spontaneous HCC rupture bleeding were 0.923 (95% CI, 0.890-0.956) and 0.930 (95% CI, 0.875-0.985), respectively, which were higher than that of the existing conventional models (all P < 0.0001). The ANNs model that we established has better survival prediction performance.
Convex Least Angle Regression Based LASSO Feature Selection and Swish Activation Function Model for Startup Survival Rate
A startup is a recently established business venture led by entrepreneurs, to create and offer new products or services. The discovery of promising startups is a challenging task for creditors, policymakers, and investors. Therefore, the startup survival rate prediction is required to be developed for the success/failure of startup companies. In this paper, the feature selection using the Convex Least Angle Regression Least Absolute Shrinkage and Selection Operator (CLAR-LASSO) is proposed to improve the classification of startup survival rate prediction. The Swish Activation Function based Long Short-Term Memory (SAFLSTM) is developed for classifying the survival rate of startups. Further, the Local Interpretable Model-agnostic Explanations (LIME) model interprets the predicted classification to the user. Existing research such as Hyper Parameter Tuning (HPT)-Logistic regression, HPT-Support Vector Machine (SVM), HPT-XGBoost, and SAFLSTM are used to compare the CLAR-LASSO. The accuracy of the CLAR-LASSO is 95.67% which is high when compared to the HPT-Logistic regression, HPT-SVM, HPT-XGBoost, and SAFLSTM.
An efficient correlation based adaptive LASSO regression method for air quality index prediction
One of the adverse effects of population growth and urbanization in developing countries is air pollution. Due to which more than 4.2 million deaths occur every year. Therefore, prediction of air quality is a subject worth in-depth research and has received substantial interest in the recent years from academic units and the government. Feature selection methods are applied before prediction to identify potentially significant predictors based on exploratory data analysis. In this research work, a feature selection method based on Least Absolute Selection and Shrinkage Operator (LASSO) named Correlation based Adaptive LASSO (CbAL) Regression method has been proposed for predicting the air quality. For the experimental evaluation, cross regional data, including the concentration of pollutants and the meteorological factors of Delhi and its surrounding cities, has been taken from the Central Pollution Control Board (CPCB) Website. Further, to validate this feature selection method, various machine learning techniques have been taken into consideration and some preventive measures have been suggested to enhance the air quality. Feature selection analysis reveals that carbon monoxide, sulphur dioxide, nitrogen dioxide and Ozone are the most important factors for forecasting the air quality and the pollutants found in the cities of Noida and Gurugram have a more substantial impact on the Air Quality Index of Delhi than other surrounding cities. The model evaluation depicts that the feature subset extracted by the proposed method performs better than the complete dataset and the subset extracted by LASSO Regression with an average classification accuracy of 78%. The findings of this study can help to identify important contributors of AQI so that viable measures to improve the air quality of Delhi can be carried out.
Predictors of attrition in a longitudinal population-based study of aging
ABSTRACTBackgroundLongitudinal studies predictably experience non-random attrition over time. Among older adults, risk factors for attrition may be similar to risk factors for outcomes such as cognitive decline and dementia, potentially biasing study results. ObjectiveTo characterize participants lost to follow-up which can be useful in the study design and interpretation of results. MethodsIn a longitudinal aging population study with 10 years of annual follow-up, we characterized the attrited participants (77%) compared to those who remained in the study. We used multivariable logistic regression models to identify attrition predictors. We then implemented four machine learning approaches to predict attrition status from one wave to the next and compared the results of all five approaches. ResultsMultivariable logistic regression identified those more likely to drop out as older, male, not living with another study participant, having lower cognitive test scores and higher clinical dementia ratings, lower functional ability, fewer subjective memory complaints, no physical activity, reported hobbies, or engagement in social activities, worse self-rated health, and leaving the house less often. The four machine learning approaches using areas under the receiver operating characteristic curves produced similar discrimination results to the multivariable logistic regression model. ConclusionsAttrition was most likely to occur in participants who were older, male, inactive, socially isolated, and cognitively impaired. Ignoring attrition would bias study results especially when the missing data might be related to the outcome (e.g. cognitive impairment or dementia). We discuss possible solutions including oversampling and other statistical modeling approaches.
Predicting Model of Biochemical Recurrence of Prostate Carcinoma (PCa-BCR) Using MR Perfusion-Weighted Imaging-Based Radiomics
Objective To build a combined model that integrates clinical data, contrast-enhanced ultrasound, and magnetic resonance perfusion-weighted imaging-based radiomics for predicting the possibility of biochemical recurrence of prostate carcinoma and develop a nomogram tool. Method We retrospectively analyzed the clinical, ultrasound, and magnetic resonance imaging data of 206 patients pathologically confirmed with prostate carcinoma and receiving radical prostatectomy at Xiangyang No. 1 People’s Hospital from February 2015 to August 2021. Based on one to 7 years of follow-up (prostate specific antigen [PSA] level≥0.2 ng/mL, indicative of prostate carcinoma–biochemical recurrence), the patients were divided into biochemical recurrence group (n = 77) and normal group (n = 129). The training and testing sets were formed by dividing the patients at a 7:3 ratio. In training set, The magnetic resonance perfusion-weighted imaging–based radiomics radscore was generated using lasso regression. Several predictive models were built based on the patients’ clinical imaging data. The predictive efficacy (area under the curve) of these models was compared using the MedCalc software. The decision curve analysis was conducted using the R to compare the net benefit. Finally, an external validation was carried out on the testing set, and the nomogram tool was developed for predicting prostate carcinoma–biochemical recurrence. Result The univariate analysis confirmed that Tumor diameter, tumor node metastasis classification stage of tumor, lymph node metastasis or distance metastasis, Gleason grade, preoperative PSA, ultrasound (peak intensity, arrival time, and elastography grade), and magnetic resonance imaging-radscore1/2 were predictors of prostate carcinoma–biochemical recurrence. On the training set, the combined model based on the above factors had the highest predictive efficacy for prostate carcinoma–biochemical recurrence (area under the curve: 0.91; odds ratio 0.02, 95% confidence interval: 0.85-0.95). The predictive performance of the combined model was significantly higher than that of the model based on general clinical data (area under the curve: 0.74; odds ratio 0.04, 95% confidence interval: 0.67-0.81, P < .05), contrast-enhanced ultrasound (area under the curve: 0.61; odds ratio 0.05 95% confidence interval: 0.53-0.69, P < .05), and the magnetic resonance imaging–based radiomics model (area under the curve: 0.85; odds ratio 0.03, 95% confidence interval: 0.78-0.91, P = .01). The decision curve analysis also indicated the maximum net benefit derived from the combined model, which agreed with the validation results on the testing set. The nomogram tool developed based on the combined model achieved a good performance in clinical applications. Conclusion The magnetic resonance imaging texture parameters extracted by magnetic resonance perfusion-weighted imaging Lasso regression could help increase the accuracy of the predictive model. The combined model and the nomogram tool provide support for the clinical screening of the populations at a risk for biochemical recurrence.