Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2,033
result(s) for
"lightweight model"
Sort by:
Lightweight Model-Based Weld Line Generation and Its Applications to Support the Construction of Ships and Offshore Plants
2023
Welding is the most expensive process in building ships and offshore plants. Therefore, the quantity of welding material should be calculated for the subsections (cells) of the blocks for efficient work planning, and welding paths must be generated for welding automation. Three-dimensional (3D) computer-aided design (CAD) models have been used for this work. However, relevant information regarding welding is often omitted, and a separate database and interface to this database must be developed. In this study, a method of lightweight model-based weld line generation is proposed, followed by the calculation of bead length for welding material quantity estimation and welding path generation. Experiments were performed on various test cases of curved parts and blocks. The proposed method accurately generated weld lines, calculated bead length, and generated welding paths in a short time of approximately 1 s.
Journal Article
Water surface garbage detection based on lightweight YOLOv5
2024
With the development of deep learning technology, researchers are increasingly paying attention to how to efficiently salvage surface garbage. Since the 1980s, the development of plastic products and economic growth has led to the accumulation of a large amount of garbage in rivers. Due to the large amount of garbage and the high risk of surface operations, the efficiency of manual garbage retrieval will be greatly reduced. Among existing methods, using YOLO algorithm to detect target objects is the most popular. Compared to traditional detection algorithms, YOLO algorithm not only has higher accuracy, but also is more lightweight. This article presents a lightweight YOLOv5 water surface garbage detection algorithm suitable for deployment on unmanned ships. This article has been validated on the Orca dataset, experimental results showed that the detection speed of the improved YOLOv5 increased by 4.3%, mAP value reached 84.9%, precision reached 88.7%, the parameter quantity only accounts for 12% of the original data. Compared with the original algorithm, the improved algorithm not only has higher accuracy, but also can be applied to more hardware devices due to its lighter weight.
Journal Article
Model Compression for Deep Neural Networks: A Survey
2023
Currently, with the rapid development of deep learning, deep neural networks (DNNs) have been widely applied in various computer vision tasks. However, in the pursuit of performance, advanced DNN models have become more complex, which has led to a large memory footprint and high computation demands. As a result, the models are difficult to apply in real time. To address these issues, model compression has become a focus of research. Furthermore, model compression techniques play an important role in deploying models on edge devices. This study analyzed various model compression methods to assist researchers in reducing device storage space, speeding up model inference, reducing model complexity and training costs, and improving model deployment. Hence, this paper summarized the state-of-the-art techniques for model compression, including model pruning, parameter quantization, low-rank decomposition, knowledge distillation, and lightweight model design. In addition, this paper discusses research challenges and directions for future work.
Journal Article
Augmentation Method for High Intra-Class Variation Data in Apple Detection
2022
Deep learning is widely used in modern orchard production for various inspection missions, which helps improve the efficiency of orchard operations. In the mission of visual detection during fruit picking, most current lightweight detection models are not yet effective enough to detect multi-type occlusion targets, severely affecting automated fruit-picking efficiency. This study addresses this problem by proposing the pioneering design of a multi-type occlusion apple dataset and an augmentation method of data balance. We divided apple occlusion into eight types and used the proposed method to balance the number of annotation boxes for multi-type occlusion apple targets. Finally, a validation experiment was carried out using five popular lightweight object detection models: yolox-s, yolov5-s, yolov4-s, yolov3-tiny, and efficidentdet-d0. The results show that, using the proposed augmentation method, the average detection precision of the five popular lightweight object detection models improved significantly. Specifically, the precision increased from 0.894 to 0.974, recall increased from 0.845 to 0.972, and mAP0.5 increased from 0.982 to 0.919 for yolox-s. This implies that the proposed augmentation method shows great potential for different fruit detection missions in future orchard applications.
Journal Article
PMVT: a lightweight vision transformer for plant disease identification on mobile devices
2023
Due to the constraints of agricultural computing resources and the diversity of plant diseases, it is challenging to achieve the desired accuracy rate while keeping the network lightweight. In this paper, we proposed a computationally efficient deep learning architecture based on the mobile vision transformer (MobileViT) for real-time detection of plant diseases, which we called plant-based MobileViT (PMVT). Our proposed model was designed to be highly accurate and low-cost, making it suitable for deployment on mobile devices with limited resources. Specifically, we replaced the convolution block in MobileViT with an inverted residual structure that employs a 7×7 convolution kernel to effectively model long-distance dependencies between different leaves in plant disease images. Furthermore, inspired by the concept of multi-level attention in computer vision tasks, we integrated a convolutional block attention module (CBAM) into the standard ViT encoder. This integration allows the network to effectively avoid irrelevant information and focus on essential features. The PMVT network achieves reduced parameter counts compared to alternative networks on various mobile devices while maintaining high accuracy across different vision tasks. Extensive experiments on multiple agricultural datasets, including wheat, coffee, and rice, demonstrate that the proposed method outperforms the current best lightweight and heavyweight models. On the wheat dataset, PMVT achieves the highest accuracy of 93.6% using approximately 0.98 million (M) parameters. This accuracy is 1.6% higher than that of MobileNetV3. Under the same parameters, PMVT achieved an accuracy of 85.4% on the coffee dataset, surpassing SqueezeNet by 2.3%. Furthermore, out method achieved an accuracy of 93.1% on the rice dataset, surpassing MobileNetV3 by 3.4%. Additionally, we developed a plant disease diagnosis app and successfully used the trained PMVT model to identify plant disease in different scenarios.
Journal Article
A Lightweight Nighttime Vehicle and Pedestrian Detection Method Based on CWD Feature Distillation
2025
To address the issues of complex structure, high parameter count, and computational load in the improved YOLO-WDS model, a lightweight design based on Channel-Wise Distillation (CWD) is proposed, leveraging its ability to handle feature alignment in dense prediction tasks. First, the channel numbers of the improved YOLO-WDS model are adjusted to generate lightweight detection models at different scales—light-s, light-m, and light-l. Second, distillation experiments are designed using the CWD feature distillation method to enhance the detection accuracy of the light-series models. Finally, the effectiveness of the proposed method is validated through experiments, and comparisons of different distillation positions demonstrate the superiority of CWD feature distillation in balancing model lightweighting and detection accuracy. The results show that, compared to the improved YOLO-WDS model, the parameter counts of the distilled light-series models are reduced by 39.27%, 56.56%, and 67.77%, respectively, while the computational loads are reduced by 23.81%, 47.29%, and 48.25%. Additionally, compared to YOLOv8, the detection accuracy is improved by 1.7%, 0.9%, and 0.3%, respectively, achieving model lightweighting while maintaining high detection accuracy.
Journal Article
Transformer Help CNN See Better: A Lightweight Hybrid Apple Disease Identification Model Based on Transformers
2022
The complex backgrounds of crop disease images and the small contrast between the disease area and the background can easily cause confusion, which seriously affects the robustness and accuracy of apple disease- identification models. To solve the above problems, this paper proposes a Vision Transformer-based lightweight apple leaf disease- identification model, ConvViT, to extract effective features of crop disease spots to identify crop diseases. Our ConvViT includes convolutional structures and Transformer structures; the convolutional structure is used to extract the global features of the image, and the Transformer structure is used to obtain the local features of the disease region to help the CNN see better. The patch embedding method is improved to retain more edge information of the image and promote the information exchange between patches in the Transformer. The parameters and FLOPs (Floating Point Operations) of the model are significantly reduced by using depthwise separable convolution and linear-complexity multi-head attention operations. Experimental results on a complex background of a self-built apple leaf disease dataset show that ConvViT achieves comparable identification results (96.85%) with the current performance of the state-of-the-art Swin-Tiny. The parameters and FLOPs are only 32.7% and 21.7% of Swin-Tiny, and significantly ahead of MobilenetV3, Efficientnet-b0, and other models, which indicates that the proposed model is indeed an effective disease-identification model with practical application value.
Journal Article
MPE-YOLO: enhanced small target detection in aerial imaging
2024
Aerial image target detection is essential for urban planning, traffic monitoring, and disaster assessment. However, existing detection algorithms struggle with small target recognition and accuracy in complex environments. To address this issue, this paper proposes an improved model based on YOLOv8, named MPE-YOLO. Initially, a multilevel feature integrator (MFI) module is employed to enhance the representation of small target features, which meticulously moderates information loss during the feature fusion process. For the backbone network of the model, a perception enhancement convolution (PEC) module is introduced to replace traditional convolutional layers, thereby expanding the network’s fine-grained feature processing capability. Furthermore, an enhanced scope-C2f (ES-C2f) module is designed, utilizing channel expansion and stacking of multiscale convolutional kernels to enhance the network’s ability to capture small target details. After a series of experiments on the VisDrone, RSOD, and AI-TOD datasets, the model has not only demonstrated superior performance in aerial image detection tasks compared to existing advanced algorithms but also achieved a lightweight model structure. The experimental results demonstrate the potential of MPE-YOLO in enhancing the accuracy and operational efficiency of aerial target detection. Code will be available online (https://github.com/zhanderen/MPE-YOLO).
Journal Article
Ship Fire Detection Based on an Improved YOLO Algorithm with a Lightweight Convolutional Neural Network Model
2022
Ship fire is one of the greatest dangers to ship navigation safety. Nevertheless, typical detection methods have limited detection effectiveness and accuracy due to distance restrictions and ship motion. Although the issue can be addressed by image recognition algorithms based on deep learning, the computational complexity and efficiency for ship detection are tough. This paper proposes a lightweight target identification technique based on the modified YOLOv4-tiny algorithm for the precise and efficient detection of ship fires, taking into account the distinctive characteristics of ship fires and the marine environment. Initially, a multi-scale detection technique is applied to broaden the detection range and integrate deep semantic information, thereby enhancing the feature information of small targets and obscured objects and improving the detection precision. Then, the proposed algorithm employs the SE attention mechanism for inter-channel feature fusion to improve the capability of feature extraction and the precision of ship fire detection. Last but not least, picture transformation and migration learning are added to the small ship fire dataset to accelerate the convergence pace, improve the convergence effect, and reduce dataset dependence. The simulation experiments reveal that the proposed I-YOLOv4-tiny + SE model outperforms the benchmark algorithm in terms of ship fire detection accuracy and detection efficiency and that it satisfies the real-time ship fire warning criteria in demanding maritime environments.
Journal Article
Enhancing Medical Image Denoising with Innovative Teacher–Student Model-Based Approaches for Precision Diagnostics
2023
The realm of medical imaging is a critical frontier in precision diagnostics, where the clarity of the image is paramount. Despite advancements in imaging technology, noise remains a pervasive challenge that can obscure crucial details and impede accurate diagnoses. Addressing this, we introduce a novel teacher–student network model that leverages the potency of our bespoke NoiseContextNet Block to discern and mitigate noise with unprecedented precision. This innovation is coupled with an iterative pruning technique aimed at refining the model for heightened computational efficiency without compromising the fidelity of denoising. We substantiate the superiority and effectiveness of our approach through a comprehensive suite of experiments, showcasing significant qualitative enhancements across a multitude of medical imaging modalities. The visual results from a vast array of tests firmly establish our method’s dominance in producing clearer, more reliable images for diagnostic purposes, thereby setting a new benchmark in medical image denoising.
Journal Article