Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
21,000 result(s) for "linear regression model"
Sort by:
Particulate Matter Concentrations over South Korea: Impact of Meteorology and Other Pollutants
Air pollution is a serious challenge in South Korea and worldwide, and negatively impacts human health and mortality rates. To assess air quality and the spatiotemporal characteristics of atmospheric particulate matter (PM), PM concentrations were compared with meteorological conditions and the concentrations of other airborne pollutants over South Korea from 2015 to 2020, using different linear and non-linear models such as linear regression, generalized additive, and multivariable linear regression models. The results showed that meteorological conditions played a significant role in the formation, transportation, and deposition of air pollutants. PM2.5 levels peaked in January, while PM10 levels peaked in April. Both were at their lowest levels in July. Further, PM2.5 was the highest during winter, followed by spring, autumn, and summer, whereas PM10 was the highest in spring followed by winter, autumn, and summer. PM concentrations were negatively correlated with temperature, relative humidity, and precipitation. Wind speed had an inverse relationship with air quality; zonal and vertical wind components were positively and negatively correlated with PM, respectively. Furthermore, CO, black carbon, SO2, and SO4 had a positive relationship with PM. The impact of transboundary air pollution on PM concentration in South Korea was also elucidated using air mass trajectories.
Monitoring Dissolved Oxygen Concentrations in the Coastal Waters of Zhejiang Using Landsat-8/9 Imagery
The Zhejiang coastal waters (ZCW), which exhibit various turbidity levels, including low, medium, and high turbidity levels, are vital for regional ecological balance and sustainable marine resource utilization. Dissolved oxygen (DO) significantly affects marine organism survival and ecosystem health, yet there is limited research on remote sensing monitoring of DO in the ZCW, and the underlying mechanisms are unclear. This study addresses this gap by utilizing high-resolution Landsat 8/9 imagery and sea surface temperature (SST) data to develop a multiple linear regression (MLR) model for DO estimation. Compared to previous studies that utilize remote sensing band reflectance data as inputs, the results show that the red and blue bands are more suitable for establishing DO inversion models for such water bodies. The model was applied to analyze variations in the DO concentrations in the ZCW from 2013 to 2023, with a focus on Hangzhou Bay (HZB), Xiangshan Bay (XSB), Sanmen Bay (SMB), and Yueqing Bay (YQB). The temporal and spatial distributions of DO concentrations and their relationships with environmental factors, such as chlorophyll-a (Chl-a) concentrations, total suspended matter (TSM) concentrations, and thermal effluents, are analyzed. The results reveal significant seasonal fluctuations in DO concentrations, which peak in winter (e.g., 9.02 mg/L in HZB) and decrease in summer (e.g., 6.83 mg/L in HZB). Changes in the aquatic environment, particularly in the thermal effluents from the Sanmen Nuclear Power Plant (SNPP), significantly decrease coastal dissolved oxygen (DO) concentrations near drainage outlets. Chl-a and TSM directly or indirectly affect DO concentrations, with notable correlations observed in XSB. This study offers a novel approach for monitoring and managing water quality in the ZCW, facilitating the early detection of potential hypoxia issues in critical zones, such as nuclear power plant heat discharge outlets.
Improving Electricity Consumption Estimation for Electric Vehicles Based on Sparse GPS Observations
Improving the estimation accuracy for the energy consumption of electric vehicles (EVs) would greatly contribute to alleviating the range anxiety of drivers and serve as a critical basis for the planning, operation, and management of charging infrastructures. To address the challenges in energy consumption estimation encountered due to sparse Global Positioning System (GPS) observations, an estimation model is proposed that considers both the kinetic characteristics from sparse GPS observations and the unique attributes of EVs: (1) work opposing the rolling resistance; (2) aerodynamic friction losses; (3) energy consumption/generation depending on the grade of the route; (4) auxiliary load consumption; and (5) additional energy losses arising from the unstable power output of the electric motor. Two quantities, the average energy consumption per kilometer and the energy consumption for an entire trip, were focused on and compared for model fitness, parameter, and effectiveness, and the latter showed a higher fitness. Based on sparse GPS observations of 68 EVs in Aichi Prefecture, Japan, the traditional linear regression approach and a multilevel mixed-effects linear regression approach were used for model calibration. The proposed model showed a high accuracy and demonstrated a great potential for application in using sparse GPS observations to predict the energy consumption of EVs.
Construction of Linear Models for the Normalized Vegetation Index (NDVI) for Coffee Crops in Peru Based on Historical Atmospheric Variables from the Climate Engine Platform
The rapid development of digital tools for crop management offers new opportunities to mitigate the effects of climate change on agriculture. This study examines the Normalized Difference Vegetation Index (NDVI) in coffee-growing areas of the province of Rodriguez de Mendoza, southern Peru, from 2001 to 2022. The objectives were the following: (a) to analyze NDVI trends in these areas; (b) to investigate trends in climatic variables and their correlations with altitude and NDVI; and c) to develop linear models tailored to each coffee-growing area. The study identified significant differences in NDVI trends among coffee plants, with mean NDVI values ranging from about 0.6 to 0.8. These values suggest the presence of stress conditions that should be monitored to improve crop quality, particularly in Huambo. Variability in rainfall, maximum and minimum temperatures, relative humidity, and altitude was also observed, with NDVI values showing a strong negative correlation with altitude. These results are crucial for making informed strategic decisions in integrated crop management and for monitoring crop health using vegetation indices.
Regression Analysis of Normalized Difference Vegetation Index (NDVI) to Compare Seasonal Patterns and 15 Year Trend of Vegetation from East to West of Nepal
Understanding the changing patterns and trend of vegetation is essential for its socio-environmental values. Normalized difference vegetation index (NDVI), a satellite based data obtained from Moderate Resolutions Imaging Spectro-radiometer (MODIS) were analysed. The data have a characteristic resolution of 250 × 250 m2 and a 16-day composite period. They were ordered separately for each sample plot from east, centre and west of Nepal, for 15 years period, 2000 to 2015. MODIS, Land Surface Temperature (LST) data were used to identify unreliable NDVI values and hence eliminated. Also, the unusually fluctuating NDVI values during the rainy season were removed. A cubic spline function (for seasonal patterns), linear regression model (for NDVI trend) and generalized estimating equations (GEE for comparison of the changing trends) were the models used. The results showed a patterned annual seasonal vegetation and significant trends during the 15 years. Seasonal growth showed a peak in rainy season and trough in the winter season, with slight temporal variation among the areas with a characteristic shift of seasonal greening (start of greening) and browning (end of greening) from east to west of Nepal. The NDVI trend was significantly rising in eastern and western suburban areas while the central urban city had a significant decline. The temporal shift of start and end of the season from east to west can be of value to agriculturalists.
Comparison of the Prediction Accuracy of Total Viable Bacteria Counts in a Batch Balloon Digester Charged with Cow Manure: Multiple Linear Regression and Non-Linear Regression Models
Biogas technology is rapidly gaining market penetration, and the type of digesters employed in the harnessing of the biogas from biodegradable waste is crucial in enhancing the total viable bacteria counts. This study focused on the exploration of input parameter (number of days, daily slurry temperature, and pH) and target (total viable bacteria counts) datasets from anaerobic balloon digester charged with cow manure using data acquisition system and standard methods. The predictors were ranked according to their weights of importance to the desired targets using the reliefF test. The complete dataset was randomly partitioned into testing and validated samples at a ratio of 60% and 40%, respectively. The developed non-linear regression model applied on the testing samples was capable of predicting the yield of the total viable bacteria counts with better accuracy as the determination coefficient, mean absolute error, and p-value were 0.959, 0.180, and 0.602, respectively, as opposed to the prediction with the multiple linear regression model that yielded 0.920, 0.206, and 0.514, respectively. The 2D multi-contour surface plots derived from the developed models were used to simulate the variation in the desired targets to each predictor while the others were held constant.
Assessment of Deposited Red Clay Soil in Kirkuk City Using Remote Sensing Data and GIS Techniques
This study investigates the physical characteristics of red clay using the IDW approach and linear regression modeling in an area of 268.12 km2, focusing on Kirkuk, Bor, and Jambor structures. Through the analysis of 52 soil samples and the integration of laboratory data with IDW and regression results, several significant findings have emerged. The IDW method combined with linear regression proves to be a cost-effective and efficient approach for obtaining soil property data and generating accurate digital maps of red clay’s physical features. The Silt concentration exhibits a wide range, while the gravel content remains relatively low, indicating the predominance of silt in the soil composition. Analysis of Atterberg limits reveals the soil’s behavior and consistency in response to moisture, with the plasticity index generally falling within the low to medium range due to the considerable silt content in most soil samples. The linear regression model highlights positive correlations between the liquid limit, plastic limit, and plasticity index. Moderately positive relationships exist between the liquid limit and clay content, as well as a weak positive association between the liquid limit and specific gravity. Dry density, on the other hand, shows no significant correlation with other physical variables, suggesting its independence from the measured parameters. The plastic limit demonstrates a stronger relationship with the clay content compared to the liquid limit. Additionally, weak positive correlations are found between the liquid limit, plastic limit, and specific gravity and water content, indicating the influence of moisture on these parameters. Furthermore, gravel exhibits a moderate positive correlation with sand and silt concentrations, while a strong positive correlation is observed between sand and silt contents, underscoring their close association with the soil composition.
Gene Association Analysis of Quantitative Trait Based on Functional Linear Regression Model with Local Sparse Estimator
Functional linear regression models have been widely used in the gene association analysis of complex traits. These models retain all the genetic information in the data and take full advantage of spatial information in genetic variation data, which leads to brilliant detection power. However, the significant association signals identified by the high-power methods are not all the real causal SNPs, because it is easy to regard noise information as significant association signals, leading to a false association. In this paper, a method based on the sparse functional data association test (SFDAT) of gene region association analysis is developed based on a functional linear regression model with local sparse estimation. The evaluation indicators CSR and DL are defined to evaluate the feasibility and performance of the proposed method with other indicators. Simulation studies show that: (1) SFDAT performs well under both linkage equilibrium and linkage disequilibrium simulation; (2) SFDAT performs successfully for gene regions (including common variants, low-frequency variants, rare variants and mix variants); (3) With power and type I error rates comparable to OLS and Smooth, SFDAT has a better ability to handle the zero regions. The Oryza sativa data set is analyzed by SFDAT. It is shown that SFDAT can better perform gene association analysis and eliminate the false positive of gene localization. This study showed that SFDAT can lower the interference caused by noise while maintaining high power. SFDAT provides a new method for the association analysis between gene regions and phenotypic quantitative traits.
Bayesian Reference Analysis for the Generalized Normal Linear Regression Model
This article proposes the use of the Bayesian reference analysis to estimate the parameters of the generalized normal linear regression model. It is shown that the reference prior led to a proper posterior distribution, while the Jeffreys prior returned an improper one. The inferential purposes were obtained via Markov Chain Monte Carlo (MCMC). Furthermore, diagnostic techniques based on the Kullback–Leibler divergence were used. The proposed method was illustrated using artificial data and real data on the height and diameter of Eucalyptus clones from Brazil.
Development of a Multiple Linear Regression Model for Meteorological Drought Index Estimation Based on Landsat Satellite Imagery
Climate polarization due to global warming has increased the intensity of drought in some regions, and the need for drought estimation studies to help minimize damage is increasing. In this study, we constructed remote sensing and climate data for Boryeong, Chungcheongnam-do, Korea, and developed a model for drought index estimation by classifying data characteristics and applying multiple linear regression analysis. The drought indices estimated in this study include four types of standardized precipitation indices (SPI1, SPI3, SPI6, and SPI9) used as meteorological drought indices and calculated through cumulative precipitation. We then applied statistical analysis to the developed model and assessed its ability as a drought index estimation tool using remote sensing data. Our results showed that its adj.R2 value, achieved using cumulative precipitation for one month, was very low (approximately 0.003), while for the SPI3, SPI6, and SPI9 models, the adj.R2 values were significantly higher than the other models at 0.67, 0.64, and 0.56, respectively, when the same data were used.