Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
927
result(s) for
"local translation"
Sort by:
Astrocytes locally translate transcripts in their peripheral processes
by
Khazanchi, Rohan
,
Ouwenga, Rebecca
,
Sakers, Kristina
in
Amino acid sequence
,
Astrocytes
,
Biological Sciences
2017
Local translation in neuronal processes is key to the alteration of synaptic strength necessary for long-term potentiation, learning, and memory. Here, we present evidence that regulated de novo protein synthesis occurs within distal, perisynaptic astrocyte processes. Astrocyte ribosomal proteins are found adjacent to synapses in vivo, and immunofluorescent detection of peptide elongation in acute slices demonstrates robust translation in distal processes. We have also developed a biochemical approach to define candidate transcripts that are locally translated in astrocyte processes. Computational analyses indicate that astrocyte-localized translation is both sequence-dependent and enriched for particular biological functions, such as fatty acid synthesis, and for pathways consistent with known roles for astrocyte processes, such as GABA and glutamate metabolism. These transcripts also include glial regulators of synaptic refinement, such as Sparc. Finally, the transcripts contain a disproportionate amount of a binding motif for the quaking RNA binding protein, a sequence we show can significantly regulate mRNA localization and translation in the astrocytes. Overall, our observations raise the possibility that local production of astrocyte proteins may support microscale alterations of adjacent synapses.
Journal Article
TDP-43 transports ribosomal protein mRNA to regulate axonal local translation in neuronal axons
by
Hirokawa, Sachiko
,
Nishizawa, Masatoyo
,
Jin, Yinshi
in
5' Untranslated Regions
,
Amyotrophic lateral sclerosis
,
Axon guidance
2020
Mislocalization and abnormal deposition of TDP-43 into the cytoplasm (TDP-43 proteinopathy) is a hallmark in neurons of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). However, the pathogenic mechanism of the diseases linked to TDP-43 is largely unknown. We hypothesized that the failure of mRNA transport to neuronal axons by TDP-43 may contribute to neurodegeneration in ALS and FTLD, and sought to examine the function of TDP-43 by identifying its target mRNA for axonal transport. We found that mRNAs related to translational function including ribosomal proteins (RPs) were decreased by shRNA-based TDP-43 knock-down in neurites of cortical neurons. TDP-43 binds to and transports the RP mRNAs through their 5′ untranslated region, which contains a common 5′ terminal oligopyrimidine tract motif and a downstream GC-rich region. We showed by employing in vitro and in vivo models that the RP mRNAs were translated and incorporated into native ribosomes locally in axons to maintain functionality of axonal ribosomes, which is required for local protein synthesis in response to stimulation and stress to axons. We also found that RP mRNAs were reduced in the pyramidal tract of sporadic ALS cases harboring TDP-43 pathology. Our results elucidated a novel function of TDP-43 to control transport of RP mRNAs and local translation by ribosomes to maintain morphological integrity of neuronal axons, and proved the influence of this function of TDP-43 on neurodegeneration in ALS and FTLD associated with TDP-43 proteinopathy.
Journal Article
Subcellular sequencing of single neurons reveals the dendritic transcriptome of GABAergic interneurons
2021
Although mRNAs are localized in the processes of excitatory neurons, it is still unclear whether interneurons also localize a large population of mRNAs. In addition, the variability in the localized mRNA population within and between cell types is unknown. Here we describe the unbiased transcriptomic characterization of the subcellular compartments of hundreds of single neurons. We separately profiled the dendritic and somatic transcriptomes of individual rat hippocampal neurons and investigated mRNA abundances in the soma and dendrites of single glutamatergic and GABAergic neurons. We found that, like their excitatory counterparts, interneurons contain a rich repertoire of ~4000 mRNAs. We observed more cell type-specific features among somatic transcriptomes than their associated dendritic transcriptomes. Finally, using celltype-specific metabolic labeling of isolated neurites, we demonstrated that the processes of glutamatergic and, notably, GABAergic neurons were capable of local translation, suggesting mRNA localization and local translation are general properties of neurons.
Journal Article
Axon TRAP reveals learning-associated alterations in cortical axonal mRNAs in the lateral amygdala
by
Santini, Emanuela
,
Kanadia, Rahul N
,
Lhakhang, Tenzin
in
amygdala
,
axonal translation
,
local translation
2019
Local translation can support memory consolidation by supplying new proteins to synapses undergoing plasticity. Translation in adult forebrain dendrites is an established mechanism of synaptic plasticity and is regulated by learning, yet there is no evidence for learning-regulated protein synthesis in adult forebrain axons, which have traditionally been believed to be incapable of translation. Here, we show that axons in the adult rat amygdala contain translation machinery, and use translating ribosome affinity purification (TRAP) with RNASeq to identify mRNAs in cortical axons projecting to the amygdala, over 1200 of which were regulated during consolidation of associative memory. Mitochondrial and translation-related genes were upregulated, whereas synaptic, cytoskeletal, and myelin-related genes were downregulated; the opposite effects were observed in the cortex. Our results demonstrate that axonal translation occurs in the adult forebrain and is altered after learning, supporting the likelihood that local translation is more a rule than an exception in neuronal processes.
Journal Article
Neurite-Enriched MicroRNA-218 Stimulates Translation of the GluA2 Subunit and Increases Excitatory Synaptic Strength
by
Scholz-Starke, Joachim
,
Tkatch, Tatiana
,
Lignani, Gabriele
in
Animals
,
Base Sequence
,
Biomedical and Life Sciences
2019
Local control of protein translation is a fundamental process for the regulation of synaptic plasticity. It has been demonstrated that the local protein synthesis occurring in axons and dendrites can be shaped by numerous mechanisms, including miRNA-mediated regulation. However, several aspects underlying this regulatory process have not been elucidated yet. Here, we analyze the differential miRNA profile in cell bodies and neurites of primary hippocampal neurons and find an enrichment of the precursor and mature forms of miR-218 in the neuritic projections. We show that miR-218 abundance is regulated during hippocampal development and by chronic silencing or activation of neuronal network. Overexpression and knockdown of miR-218 demonstrated that miR-218 targets the mRNA encoding the GluA2 subunit of AMPA receptors and modulates its expression. At the functional level, miR-218 overexpression increases glutamatergic synaptic transmission at both single neuron and network levels. Our data demonstrate that miR-218 may play a key role in the regulation of AMPA-mediated excitatory transmission and in the homeostatic regulation of synaptic plasticity.
Journal Article
function of RNA-binding proteins at the synapse: implications for neurodegeneration
2015
The loss of synapses is a central event in neurodegenerative diseases. Synaptic proteins are often associated with disease neuropathology, but their role in synaptic loss is not fully understood. Of the many processes involved in sustaining the integrity of synapses, local protein translation can directly impact synaptic formation, communication, and maintenance. RNA-binding proteins and their association with RNA granules serve to regulate mRNA transportation and translation at synapses and in turn regulate the synapse. Genetic mutations in RNA-binding proteins FUS and TDP-43 have been linked with causing neurodegenerative diseases: amyotrophic lateral sclerosis and frontotemporal dementia. The observation that mutations in FUS and TDP-43 coincide with changes in RNA granules provides evidence that dysfunction of RNA metabolism may underlie the mechanism of synaptic loss in these diseases. However, we do not know how mutations in RNA-binding proteins would affect RNA granule dynamics and local translation, or if these alterations would cause neurodegeneration. Further investigation into this area will lead to important insights into how disruption of RNA metabolism and local translation at synapses can cause neurodegenerative diseases.
Journal Article
FMRP regulates mRNAs encoding distinct functions in the cell body and dendrites of CA1 pyramidal neurons
2021
Neurons rely on translation of synaptic mRNAs in order to generate activity-dependent changes in plasticity. Here, we develop a strategy combining compartment-specific crosslinking immunoprecipitation (CLIP) and translating ribosome affinity purification (TRAP) in conditionally tagged mice to precisely define the ribosome-bound dendritic transcriptome of CA1 pyramidal neurons. We identify CA1 dendritic transcripts with differentially localized mRNA isoforms generated by alternative polyadenylation and alternative splicing, including many that have altered protein-coding capacity. Among dendritic mRNAs, FMRP targets were found to be overrepresented. Cell-type-specific FMRP-CLIP and TRAP in microdissected CA1 neuropil revealed 383 dendritic FMRP targets and suggests that FMRP differentially regulates functionally distinct modules in CA1 dendrites and cell bodies. FMRP regulates ~15–20% of mRNAs encoding synaptic functions and 10% of chromatin modulators, in the dendrite and cell body, respectively. In the absence of FMRP, dendritic FMRP targets had increased ribosome association, consistent with a function for FMRP in synaptic translational repression. Conversely, downregulation of FMRP targets involved in chromatin regulation in cell bodies suggests a role for FMRP in stabilizing mRNAs containing stalled ribosomes in this compartment. Together, the data support a model in which FMRP regulates the translation and expression of synaptic and nuclear proteins within different compartments of a single neuronal cell type. The brain has over 100 billion neurons that together form vast networks to relay electrical signals. A neuron receives electrical signals from other neurons via branch-like structures known as dendrites. The signals then travel into the cell body of the neuron. If their sum reaches a threshold, they fire a new signal through a single outgoing projection known as the axon, which is connected to the dendrites of other neurons. A single neuron has thousands of dendrites that each receive inputs from different axons, and it is thought that the strengthening and weakening of these dendritic connections enables us to learn and store memories. Dendrites are filled with molecules known as messenger ribonucleic acids (mRNAs) that act as templates to make proteins. Axonal signals reaching the dendrites can trigger these mRNAs to make new proteins that strengthen or weaken the connections between the two neurons, which is believed to be necessary for generating long-term memories. A protein called FMRP is found in both the cell body and dendrites and is able to bind to and regulate the ability of mRNAs to make proteins. A loss of the gene encoding FMRP is the most common cause of inherited intellectual disability and autism in humans, but it remains unclear precisely what role this protein plays in learning and memory. Hale et al. used genetic and bioinformatics approaches to specifically study mRNAs in the dendrites and the cell body of a specific type of neuron involved in memory in mice. The experiments revealed that FMRP played different roles in the dendrites and cell body. In the dendrites, FMRP interacted with mRNAs encoding proteins that can change how the neuron responds to a signal from a neighboring neuron and may alter how strong the connections between the neurons are. On the other hand, FMRP in the cell body modulated the activities of mRNAs encoding proteins that in turn regulate the activities of genes. These findings change the way we think about how memory may work by suggesting that groups of mRNAs encoding proteins with certain activities are found in distinct parts of a single neuron. These observations offer new ways to approach intellectual disabilities and autism spectrum disorder.
Journal Article
mtIF3 is locally translated in axons and regulates mitochondrial translation for axonal growth
2022
Background
The establishment and maintenance of functional neural connections relies on appropriate distribution and localization of mitochondria in neurites, as these organelles provide essential energy and metabolites. In particular, mitochondria are transported to axons and support local energy production to maintain energy-demanding neuronal processes including axon branching, growth, and regeneration. Additionally, local protein synthesis is required for structural and functional changes in axons, with nuclear-encoded mitochondrial mRNAs having been found localized in axons. However, it remains unclear whether these mRNAs are locally translated and whether the potential translated mitochondrial proteins are involved in the regulation of mitochondrial functions in axons. Here, we aim to further understand the purpose of such compartmentalization by focusing on the role of mitochondrial initiation factor 3 (mtIF3), whose nuclear-encoded transcripts have been shown to be present in axonal growth cones.
Results
We demonstrate that brain-derived neurotrophic factor (BDNF) induces local translation of mtIF3 mRNA in axonal growth cones. Subsequently, mtIF3 protein is translocated into axonal mitochondria and promotes mitochondrial translation as assessed by our newly developed bimolecular fluorescence complementation sensor for the assembly of mitochondrial ribosomes. We further show that BDNF-induced axonal growth requires mtIF3-dependent mitochondrial translation in distal axons.
Conclusion
We describe a previously unknown function of mitochondrial initiation factor 3 (mtIF3) in axonal protein synthesis and development. These findings provide insight into the way neurons adaptively control mitochondrial physiology and axonal development via local mtIF3 translation.
Journal Article
Axonal mRNA localization and translation: local events with broad roles
2021
Messenger RNA (mRNA) can be transported and targeted to different subcellular compartments and locally translated. Local translation is an evolutionally conserved mechanism that in mammals, provides an important tool to exquisitely regulate the subcellular proteome in different cell types, including neurons. Local translation in axons is involved in processes such as neuronal development, function, plasticity, and diseases. Here, we summarize the current progress on axonal mRNA transport and translation. We focus on the regulatory mechanisms governing how mRNAs are transported to axons and how they are locally translated in axons. We discuss the roles of axonally synthesized proteins, which either function locally in axons, or are retrogradely trafficked back to soma to achieve neuron-wide gene regulation. We also examine local translation in neurological diseases. Finally, we give a critical perspective on the remaining questions that could be answered to uncover the fundamental rules governing local translation, and discuss how this could lead to new therapeutic targets for neurological diseases.
Journal Article
Emerging Roles for 3′ UTRs in Neurons
by
Bae, Bongmin
,
Miura, Pedro
in
3' Untranslated Regions - genetics
,
Alternative Splicing
,
Animals
2020
The 3′ untranslated regions (3′ UTRs) of mRNAs serve as hubs for post-transcriptional control as the targets of microRNAs (miRNAs) and RNA-binding proteins (RBPs). Sequences in 3′ UTRs confer alterations in mRNA stability, direct mRNA localization to subcellular regions, and impart translational control. Thousands of mRNAs are localized to subcellular compartments in neurons—including axons, dendrites, and synapses—where they are thought to undergo local translation. Despite an established role for 3′ UTR sequences in imparting mRNA localization in neurons, the specific RNA sequences and structural features at play remain poorly understood. The nervous system selectively expresses longer 3′ UTR isoforms via alternative polyadenylation (APA). The regulation of APA in neurons and the neuronal functions of longer 3′ UTR mRNA isoforms are starting to be uncovered. Surprising roles for 3′ UTRs are emerging beyond the regulation of protein synthesis and include roles as RBP delivery scaffolds and regulators of alternative splicing. Evidence is also emerging that 3′ UTRs can be cleaved, leading to stable, isolated 3′ UTR fragments which are of unknown function. Mutations in 3′ UTRs are implicated in several neurological disorders—more studies are needed to uncover how these mutations impact gene regulation and what is their relationship to disease severity.
Journal Article