Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1 result(s) for "low latency communication-based control technique"
Sort by:
Controlling DC microgrids in communities, buildings and data centers
Microgrid technology is poised to transform the electricity industry. In the context of commercial/domestic buildings and data centers, where most loads are native direct current, DC microgrids are in fact a natural choice. Voltage stability and current/power‐sharing between sources within a DC microgrid have been studied extensively in recent years. DC voltage droop control is known to have its drawbacks in that current or power‐sharing is relatively poor. To eliminate this drawback, some have proposed to add a communication‐based consensus control in addition to the primary voltage droop control loop. The current sharing performance is improved, however, the voltage deviation inherent in droop control requires a further, slower control to achieve voltage quality control. To overcome this complication, and reduction in response time, a low latency communication‐based control technique that achieves proportional current sharing without significant voltage deviations is proposed in this work. The stability of the proposed control technique is compared to state‐of‐the‐art using eigenvalue and transient analyses. The negative impact of communication delays on proposed control is discussed in detail.