Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
14 result(s) for "lure longevity"
Sort by:
Field Evaluation of Synthetic Components of the Sex Pheromone of the Tea Pest Helopeltis cinchonae Mann (Hemiptera: Miridae)
Helopeltis cinchonae is an emerging pest of tea and causes severe damage to tea plantations in China. The female of H. cinchonae has been reported to produce a sex pheromone consisting of two components, hexyl (3R)-3-acetoxybutyrate and (5R)-1-acetoxy-5-butyroxyhexane, and lures containing the synthetic compounds have been shown to attract male H. cinchonae to traps in the field. This is the first time that components of the sex pheromone have been identified for a species of Helopeltis bug, but their field application has not been evaluated in detail. The present study shows that a blend of both compounds loaded into a polyethylene vial at 0.2 and 2 mg, respectively, caught significantly more male H. cinchonae bugs than the individual compounds and all the other tested blends. Sticky wing traps baited with the binary blend of compounds at the optimized ratio and dosage caught more bugs than bucket funnel or delta traps, and traps hung at a height of 10 cm above the tea shoots caught more bugs than those at other heights. The optimized traps and lures were used for monitoring the pest and two distinct population peaks of H. cinchonae were observed, the first one during mid-May to early June, and the other one in mid-September. Overall, the results of this study contribute to an environmentally-friendly approach to monitoring and managing H. cinchonae in the field.
Describing Seasonal Phenology of the Leafminer Phyllocnistis citrella (Lepidoptera: Gracillariidae) with Pheromone Lures: Controlling for Lure Degradation
Traps baited with pheromone lures were deployed in a Florida citrus grove at various dates over the course of 1 year to describe the seasonal flight phenology of the leafminer Phyllocnistis citrella Stainton. To compensate for lure degradation, a correction factor was applied based on a regression model of relative lure efficiency, expressed as a percent of the catch of a freshly deployed lure as a function of the number of days each set of lures was deployed. The regression of percent trap catch vs. number of days deployed yielded a quadratic expression that predicts 50% loss of lure attractiveness at 50 d after lure deployment and 90% loss at 137 d. The data transformed for lure degradation revealed 4 apparent population density peaks including 2 minor peaks with highest mean trap catch in early Apr and late Oct, and 2 major peaks with highest mean trap catch on 31 May and 1 Aug. A very small number of moths were collected on control traps without a lure. However, the pattern of trap catch on unbaited sticky cards closely paralleled that of the pheromone-baited traps.
DEVELOPMENT OF TRAPPING METHODS WITH A SYNTHETIC SEX PHEROMONE OF THE PINK HIBISCUS MEALYBUG, MACONELLICOCCUS HIRSUTUS (HEMIPTERA: PSEUDOCOCCIDAE)
The pink hibiscus mealybug, Maconellicoccus hirsutus (Green), threatens numerous crops of economic importance and could spread from populations in California and Florida to 33 other states. Field experiments conducted in Florida evaluated 3 commercially available trap designs baited with synthetic female sex pheromone for efficiency in trapping adult male M. hirsutus as well as ease in processing. Delta traps and double-sided sticky cards captured more males than Jackson traps. The Delta and Jackson traps were more effective at minimizing the capture of non-target insects. The effect of lure age on males captured was also evaluated by pre-aging lures outdoors for 0 to 8 months before testing. Fewer males were caught in Delta traps as the age of the lure increased, with significantly fewer caught in traps that had been pre-aged for 2 months. Monitoring of male flight activity throughout diel cycle with baited Delta traps indicated that males were most active around dusk. The field experiments also showed that the pheromone traps often capture males in areas where no visual indication of an infestation is evident. The pheromone trap may serve as a valuable tool to detect new infestations of pink hibiscus mealybug.
Efficacy and Species Specificity of Baits and Lures for Spotted-Wing Drosophila, Drosophila suzukii (Diptera: Drosophilidae)
Monitoring is an important element in management programs for Drosophila suzukii (Matsumura), helping users to avoid prophylactic treatments. Factors such as attractiveness, sensitivity, selectivity, longevity, and ease of use must be considered when developing a trap and lure system for monitoring and thresholds. We examined various baits and lures over a 5-yr period in sweet cherry orchards in the semiarid climate of eastern Washington. Using a jar trap, the attractants were evaluated for attractiveness (maximum capture), selectivity for D. suzukii (vs. other Drosophila species), and sex ratio of captured D. suzukii. We examined the relative performance of the attractants during periods of low (≈1 D. suzukii per trap per week) and high (232 D. suzukii per trap per week) density over the course of the growing season, which usually corresponded to mid-summer and autumn temperatures, respectively. The Scentry lure was consistently the most attractive lure, capturing the highest numbers of adult D. suzukii over the series of tests, but also had the highest levels of by-catch. Recipe-based baits (yeast, wine-vinegar, and apple cider vinegar) captured fewer D. suzukii overall, although the commercial baits Dros'Attract and Suzukii Trap were comparable to the Scentry lure in late season tests. The Trécé lures were consistently the most selective of the attractants, but had generally lower D. suzukii captures. Sex ratio varied widely among and within the tests, but with no consistent pattern among the various attractants. All attractants were successful in capturing flies, and the choice of attractant depends on the constraints and goals of the user.
Attraction and Longevity of 2- and 3-Component Food Cone Lures for the Caribbean Fruit Fly, Anastrepha suspensa (Diptera:Tephritidae)
The Caribbean fruit fly, Anastrepha suspensa (Loew) (Diptera: Tephritidae), is a quarantine pest of Citrus spp. and a production pest of guava and other specialty fruits in Florida. Effective monitoring lures and traps are needed for early pest detection and timely initiation of control measures. As part of a continued effort to identify attractive synthetic lures for the Caribbean fruit fly, we conducted field tests in Homestead, Florida to compare the efficacy and longevity of commercial 2- and 3-component cone lures (2C [ammonium acetate and putrescine], 3C [ammonium acetate, putrescine, and trimethylamine]), the current standards used by regulatory agencies, versus the traditional liquid protein bait consisting of hydrolyzed torula yeast and borax as a positive control. Additional lures were also field-aged and periodically brought into the laboratory to quantify residual chemical contents. Traps baited with the torula yeast-borax mixture captured the highest mean number of A. suspensa, and traps baited with the commercial 2C lures captured more flies than the 3C lures. Traps baited with torula yeast-borax also captured the highest number of nontarget Diptera. Captures with all three treatments were significantly biased toward females. Attractiveness of the 2C lure began to drop after 6–8 wk, and the 3C lure after 5–6 wk. Overall, these data suggest that the 2C cone lure is more attractive to A. suspensa than the 3C cone lure under field conditions in south Florida, and that the 2C lures are attractive for up to 8 wk.
Field Capture of Male Oriental Fruit Flies (Diptera: Tephritidae) in Traps Baited with Solid Dispensers Containing Varying Amounts of Methyl Eugenol
Detection of invasive populations of Bactrocera dorsalis relies on traps baited with the male-specific attractant methyl eugenol. Standard protocol involves applying 5 mL of liquid methyl eugenol (1% naled) to a cotton wick, which is then placed inside a Jackson trap. Because of the lure's high volatility, the lure is replaced every 6 wk. Prolonging the lure's longevity would increase trap servicing intervals and reduce associated costs. Conducted at 2 sites in Hawaii, the present study investigated the performance of weathered solid dispensers containing 3, 6, or 10 g of methyl eugenol, deployed with solid insecticidal strips, relative to freshly baited liquid-bearing cotton wicks. At the cooler site, the solid lure/toxicant combination captured as many males as the fresh liquid formulation for as long as 12 wk. At the warmer site, the solid lure/toxicant system had shorter longevity, apparently owing to the reduced effectiveness of the insecticidal strip over time.
Attractiveness, longevity, and release rates of multilure wafers for trapping males of the oriental fruit fly and melon fly (Diptera: Tephritidae)
Abstract Invasive fruit flies (Diptera: Tephritidae) pose a serious threat to the production and export of many commercially important fruits and vegetables. Detection of the agricultural pests Bactrocera dorsalis (Hendel) and Zeugodacus cucurbitae (Coquillett) relies heavily on traps baited with male-specific attractants. For B. dorsalis, traps are typically baited with liquid methyl eugenol (ME), and for Z. cucurbitae, traps are baited with liquid cue-lure (CL). Operating large-scale trapping networks is costly, consequently, there is much interest in identifying ways to maintain network sensitivity while reducing costs. One cost-cutting approach is the possibility of combining different male lures in the same dispenser, thus reducing the number of traps requiring servicing. The chief objective of this study was to compare captures of B. dorsalis and Z. cucurbitae males in Jackson traps baited with polymeric wafers impregnated with both ME and raspberry ketone (RK, a hydrolyzed form of CL) versus traps baited with liquid ME or CL freshly applied to cotton wicks. Captures were measured when the ME/RK wafers had been weathered for 12, 18, or 24 wk. Captures of B. dorsalis and Z. cucurbitae males were similar between fresh lure and weathered wafers over all trapping periods, with a single exception apparently due to the lessened potency of the associated killing agent. The residual amount and release rate of ME and RK from the wafers were also measured to examine possible relationships between wafer chemistry and trap catch. The possible implications of the present results to area-wide trapping programs are discussed.
Development of a Kairomone-Based Attractant as a Monitoring Tool for the Cocoa Pod Borer, Conopomorpha cramerella (Snellen) (Lepidoptera: Gracillariidae)
The cocoa pod borer (CPB), Conopomorpha cramerella, is a major economic pest of cocoa, Theobroma cacao, in Southeast Asia. CPB monitoring programs currently use a costly synthetic pheromone lure attractive to males. Field trapping experiments demonstrating an effective plant-based alternative are presented in this study. Five lychee-based products were compared for their attractiveness to CPB males. The organic lychee flavor extract (OLFE), the most attractive product, captured significantly more CPB as a 1 mL vial formulation than unbaited traps, while being competitive with the commercial pheromone lures. Additional experiments show that a 20 mL membrane OLFE lure was most effective, attracting significantly more CPB than the pheromone. When the kairomone and pheromone lures were combined, no additive or synergistic effects were observed. Concentrating the OLFE product (OLFEc) using a rotary evaporator increased the lure attractiveness to field longevity for up to 28 weeks; in contrast, pheromone lures were effective for approximately 4 weeks. The 20 mL concentrated OLFE membrane lures should provide a cheaper and more efficient monitoring tool for CPB than the current commercial pheromone lures.
Zingerone Feeding Affects Mate Choice but not Fecundity or Fertility in the Melon Fly, Zeugodacus cucurbitae (Diptera: Tephritidae)
Consuming natural male lure compounds enables the males of some fruit flies (Diptera: Tephritidae) to mate more successfully within their femalechoice mating systems. However, it remains unclear what benefits females derive from mating with lure-fed males. With Bactrocera tryoni (Froggatt) (Diptera: Tephritidae), feeding on the lures cue-lure and zingerone is associated with increased fecundity of mated females, but this direct fitness benefit was not apparent with B. dorsalis (Hendel) (with the lure methyl eugenol) or Zeugodacus cucurbitae (Coquillett) (with the lure cue-lure). Expanding on previous observations, we fed Z. cucurbitae males zingerone, but we observed no evidence of direct fitness benefits to males feeding on zingerone (i.e., mating success and virgin longevity), or to females mated to zingerone-fed males (i.e., longevity, fecundity, and egg viability). We therefore find no reason to reject the runaway selection hypothesis that previously has been proposed to explain lure attraction in B. dorsalis and Z. cucurbitae.