Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,205 result(s) for "mRNA modifications"
Sort by:
New Twists in Detecting mRNA Modification Dynamics
Modified nucleotides in mRNA are an essential addition to the standard genetic code of four nucleotides in animals, plants, and their viruses. The emerging field of epitranscriptomics examines nucleotide modifications in mRNA and their impact on gene expression. The low abundance of nucleotide modifications and technical limitations, however, have hampered systematic analysis of their occurrence and functions. Selective chemical and immunological identification of modified nucleotides has revealed global candidate topology maps for many modifications in mRNA, but further technical advances to increase confidence will be necessary. Single-molecule sequencing introduced by Oxford Nanopore now promises to overcome such limitations, and we summarize current progress with a particular focus on the bioinformatic challenges of this novel sequencing technology. Writers, readers, and erasers have now been discovered for many mRNA modifications.Global topographic candidate maps have been generated for many modifications, but high error rates need to be addressed by technical improvements in detection and validation using orthogonal methods that apply rigid selection criteria.Nanopore single-molecule direct RNA sequencing is progressing towards reliable detection of modified nucleotides in mRNA.
The Current Landscape of mRNA Vaccines Against Viruses and Cancer–A Mini Review
Both infectious viral diseases and cancer have historically been some of the most common causes of death worldwide. The COVID-19 pandemic is a decidedly relevant example of the former. Despite progress having been made over past decades, new and improved techniques are still needed to address the limitations faced by current treatment standards, with mRNA-based therapy emerging as a promising solution. Highly flexible, scalable and cost-effective, mRNA therapy is proving to be a compelling vaccine platform against viruses. Likewise, mRNA vaccines show similar promise against cancer as a platform capable of encoding multiple antigens for a diverse array of cancers, including those that are patient specific as a novel form of personalized medicine. In this review, the molecular mechanisms, biotechnological aspects, and clinical developments of mRNA vaccines against viral infections and cancer are discussed to provide an informative update on the current state of mRNA therapy research.
Pseudouridinylation of mRNA coding sequences alters translation
Chemical modifications of RNAs have long been established as key modulators of nonprotein-coding RNA structure and function in cells. There is a growing appreciation that messenger RNA (mRNA) sequences responsible for directing protein synthesis can also be posttranscriptionally modified. The enzymatic incorporation of mRNA modifications has many potential outcomes, including changing mRNA stability, protein recruitment, and translation. We tested how one of the most common modifications present in mRNA coding regions, pseudouridine (Ψ), impacts protein synthesis using a fully reconstituted bacterial translation system and human cells. Our work reveals that replacing a single uridine nucleotide with Ψ in an mRNA codon impedes amino acid addition and EF-Tu GTPase activation. A crystal structure of the Thermus thermophilus 70S ribosome with a tRNAPhe bound to a ΨUU codon in the A site supports these findings.We also find that the presence of Ψ can promote the low-level synthesis of multiple peptide products from a single mRNA sequence in the reconstituted translation system as well as human cells, and increases the rate of near-cognate Val-tRNAVal reacting on a ΨUU codon. The vast majority of Ψ moieties in mRNAs are found in coding regions, and our study suggests that one consequence of the ribosome encountering Ψ can be to modestly alter both translation speed and mRNA decoding.
Advancing mRNA technologies for therapies and vaccines: An African context
Synthetic mRNA technologies represent a versatile platform that can be used to develop advanced drug products. The remarkable speed with which vaccine development programs designed and manufactured safe and effective COVID-19 vaccines has rekindled interest in mRNA technology, particularly for future pandemic preparedness. Although recent R&D has focused largely on advancing mRNA vaccines and large-scale manufacturing capabilities, the technology has been used to develop various immunotherapies, gene editing strategies, and protein replacement therapies. Within the mRNA technologies toolbox lie several platforms, design principles, and components that can be adapted to modulate immunogenicity, stability, in situ expression, and delivery. For example, incorporating modified nucleotides into conventional mRNA transcripts can reduce innate immune responses and improve in situ translation. Alternatively, self-amplifying RNA may enhance vaccine-mediated immunity by increasing antigen expression. This review will highlight recent advances in the field of synthetic mRNA therapies and vaccines, and discuss the ongoing global efforts aimed at reducing vaccine inequity by establishing mRNA manufacturing capacity within Africa and other low- and middle-income countries.
METTL8 mRNA Methyltransferase Enhances Cancer Cell Migration via Direct Binding to ARID1A
The association of RNA modification in cancer has recently been highlighted. Methyltransferase like 8 (METTL8) is an enzyme and its role in mRNA m3C modification has barely been studied. In this study, we found that METTL8 expression was significantly up-regulated in canine mammary tumor and investigated its functional roles in the tumor process, including cancer cell proliferation and migration. METTL8 expression was up-regulated in most human breast cancer cell lines tested and decreased by Yin Yang 1 (YY1) transcription factor knockdown, suggesting that YY1 is a regulating transcription factor. The knockdown of METTL8 attenuated tumor cell growth and strongly blocked tumor cell migration. AT-rich interactive domain-containing protein 1A (ARID1A) was identified as a candidate mRNA by METTL8. ARID1A mRNA binds to METTL8 protein. ARID1A mRNA expression was not changed by METTL8 knockdown, but ARID1A protein level was significantly increased. Collectively, our study indicates that METTL8 up-regulated by YY1 in breast cancer plays an important role in cancer cell migration through the mRNA modification of ARID1A, resulting in the attenuation of its translation.
Advances in mRNA LNP-Based Cancer Vaccines: Mechanisms, Formulation Aspects, Challenges, and Future Directions
After the COVID-19 pandemic, mRNA-based vaccines have emerged as a revolutionary technology in immunization and vaccination. These vaccines have shown remarkable efficacy against the virus and opened up avenues for their possible application in other diseases. This has renewed interest and investment in mRNA vaccine research and development, attracting the scientific community to explore all its other applications beyond infectious diseases. Recently, researchers have focused on the possibility of adapting this vaccination approach to cancer immunotherapy. While there is a huge potential, challenges still remain in the design and optimization of the synthetic mRNA molecules and the lipid nanoparticle delivery system required to ensure the adequate elicitation of the immune response and the successful eradication of tumors. This review points out the basic mechanisms of mRNA-LNP vaccines in cancer immunotherapy and recent approaches in mRNA vaccine design. This review displays the current mRNA modifications and lipid nanoparticle components and how these factors affect vaccine efficacy. Furthermore, this review discusses the future directions and clinical applications of mRNA-LNP vaccines in cancer treatment.
CIGAR‐seq, a CRISPR/Cas‐based method for unbiased screening of novel mRNA modification regulators
Cellular RNA is decorated with over 170 types of chemical modifications. Many modifications in mRNA, including m 6 A and m 5 C, have been associated with critical cellular functions under physiological and/or pathological conditions. To understand the biological functions of these modifications, it is vital to identify the regulators that modulate the modification rate. However, a high‐throughput method for unbiased screening of these regulators is so far lacking. Here, we report such a method combining pooled CRISPR screen and reporters with RNA modification readout, termed C RISPR i ntegrated g RNA a nd r eporter sequencing (CIGAR‐seq). Using CIGAR‐seq, we discovered NSUN6 as a novel mRNA m 5 C methyltransferase. Subsequent mRNA bisulfite sequencing in HAP1 cells without or with NSUN6 and/or NSUN2 knockout showed that NSUN6 and NSUN2 worked on non‐overlapping subsets of mRNA m 5 C sites and together contributed to almost all the m 5 C modification in mRNA. Finally, using m 1 A as an example, we demonstrated that CIGAR‐seq can be easily adapted for identifying regulators of other mRNA modification. SYNOPSIS CIGAR‐seq is a new method combining pooled CRISPR screen with an epitranscriptomic reporter for identifying mRNA modification regulators. NSUN6 is discovered as a novel mRNA m 5 C methyltransferase, which together with NSUN2, contributes to almost all the m 5 C modification in mRNA. ‘CRISPR integrated gRNA and reporter sequencing’ (CIGAR‐seq) is a new high‐throughput method for unbiased screening of mRNA modification regulators. The study presents the first pooled CRISPR screen with epitranscriptomic readout. NSUN6 is discovered as a novel mRNA m 5 C methyltransferase. NSUN6 and NSUN2 contribute to almost all the m 5 C modification in mRNA. Graphical Abstract CIGAR‐seq is a new method combining pooled CRISPR screen with an epitranscriptomic reporter for identifying mRNA modification regulators. NSUN6 is discovered as a novel mRNA m 5 C methyltransferase, which together with NSUN2, contributes to almost all the m 5 C modification in mRNA.
The heterogeneity of microglial activation and its epigenetic and non-coding RNA regulations in the immunopathogenesis of neurodegenerative diseases
Microglia are resident immune cells in the brain and play a central role in the development and surveillance of the nervous system. Extensive gliosis is a common pathological feature of several neurodegenerative diseases, such as Alzheimer's disease (AD), the most common cause of dementia. Microglia can respond to multiple inflammatory insults and later transform into different phenotypes, such as pro- and anti-inflammatory phenotypes, thereby exerting different functions. In recent years, an increasing number of studies based on both traditional bulk sequencing and novel single-cell/nuclear sequencing and multi-omics analysis, have shown that microglial phenotypes are highly heterogeneous and dynamic, depending on the severity and stage of the disease as well as the particular inflammatory milieu. Thus, redirecting microglial activation to beneficial and neuroprotective phenotypes promises to halt the progression of neurodegenerative diseases. To this end, an increasing number of studies have focused on unraveling heterogeneous microglial phenotypes and their underlying molecular mechanisms, including those due to epigenetic and non-coding RNA modulations. In this review, we summarize the epigenetic mechanisms in the form of DNA and histone modifications, as well as the general non-coding RNA regulations that modulate microglial activation during immunopathogenesis of neurodegenerative diseases and discuss promising research approaches in the microglial era.
Epitranscriptomic mRNA modifications governing plant stress responses: underlying mechanism and potential application
Summary Plants inevitably encounter environmental adversities, including abiotic and biotic stresses, which significantly impede plant growth and reduce crop yield. Thus, fine‐tuning the fate and function of stress‐responsive RNAs is indispensable for plant survival under such adverse conditions. Recently, post‐transcriptional RNA modifications have been studied as a potent route to regulate plant gene expression under stress. Among over 160 mRNA modifications identified to date, N6‐methyladenosine (m6A) in mRNAs is notable because of its multifaceted roles in plant development and stress response. Recent transcriptome‐wide mapping has revealed the distribution and patterns of m6A in diverse stress‐responsive mRNAs in plants, building a foundation for elucidating the molecular link between m6A and stress response. Moreover, the identification and characterization of m6A writers, readers and erasers in Arabidopsis and other model crops have offered insights into the biological roles of m6A in plant abiotic stress responses. Here, we review the recent progress of research on mRNA modifications, particularly m6A, and their dynamics, distribution, regulation and biological functions in plant stress responses. Further, we posit potential strategies for breeding stress‐tolerant crops by engineering mRNA modifications and propose the future direction of research on RNA modifications to gain a much deeper understanding of plant stress biology. Post‐transcriptional RNA modifications, particularly N6‐methyladenosine (m6A), in mRNAs play a crucial role in plant stress responses, which could a potential strategy for breeding stress‐tolerant crops by engineering mRNA modifications.
Identifying N6-Methyladenosine Sites in HepG2 Cell Lines Using Oxford Nanopore Technology
RNA modifications, particularly N6-methyladenosine (m6A), are pivotal regulators of RNA functionality and cellular processes. We analyzed m6A modifications by employing Oxford Nanopore technology and the m6Anet algorithm, focusing on the HepG2 cell line. We identified 3968 potential m6A modification sites in 2851 transcripts, corresponding to 1396 genes. A gene functional analysis revealed the active involvement of m6A-modified genes in ubiquitination, transcription regulation, and protein folding processes, aligning with the known role of m6A modifications in histone ubiquitination in cancer. To ensure data robustness, we assessed reproducibility across technical replicates. This study underscores the importance of evaluating algorithmic reproducibility, especially in supervised learning. Furthermore, we examined correlations between transcriptomic, translatomic, and proteomic levels. A strong transcriptomic–translatomic correlation was observed. In conclusion, our study deepens our understanding of m6A modifications’ multifaceted impacts on cellular processes and underscores the importance of addressing reproducibility concerns in analytical approaches.