Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,663 result(s) for "machine learning (ML)"
Sort by:
A Review of Fault Diagnosing Methods in Power Transmission Systems
Transient stability is important in power systems. Disturbances like faults need to be segregated to restore transient stability. A comprehensive review of fault diagnosing methods in the power transmission system is presented in this paper. Typically, voltage and current samples are deployed for analysis. Three tasks/topics; fault detection, classification, and location are presented separately to convey a more logical and comprehensive understanding of the concepts. Feature extractions, transformations with dimensionality reduction methods are discussed. Fault classification and location techniques largely use artificial intelligence (AI) and signal processing methods. After the discussion of overall methods and concepts, advancements and future aspects are discussed. Generalized strengths and weaknesses of different AI and machine learning-based algorithms are assessed. A comparison of different fault detection, classification, and location methods is also presented considering features, inputs, complexity, system used and results. This paper may serve as a guideline for the researchers to understand different methods and techniques in this field.
Designing Unmanned Aerial Survey Monitoring Program to Assess Floating Litter Contamination
Monitoring marine contamination by floating litter can be particularly challenging since debris are continuously moving over a large spatial extent pushed by currents, waves, and winds. Floating litter contamination have mostly relied on opportunistic surveys from vessels, modeling and, more recently, remote sensing with spectral analysis. This study explores how a low-cost commercial unmanned aircraft system equipped with a high-resolution RGB camera can be used as an alternative to conduct floating litter surveys in coastal waters or from vessels. The study compares different processing and analytical strategies and discusses operational constraints. Collected UAS images were analyzed using three different approaches: (i) manual counting (MC), using visual inspection and image annotation with object counts as a baseline; (ii) pixel-based detection, an automated color analysis process to assess overall contamination; and (iii) machine learning (ML), automated object detection and identification using state-of-the-art convolutional neural network (CNNs). Our findings illustrate that MC still remains the most precise method for classifying different floating objects. ML still has a heterogeneous performance in correctly identifying different classes of floating litter; however, it demonstrates promising results in detecting floating items, which can be leveraged to scale up monitoring efforts and be used in automated analysis of large sets of imagery to assess relative floating litter contamination.
Machine Learning White-Hat Worm Launcher for Tactical Response by Zoning in Botnet Defense System
Malicious botnets such as Mirai are a major threat to IoT networks regarding cyber security. The Botnet Defense System (BDS) is a network security system based on the concept of “fight fire with fire”, and it uses white-hat botnets to fight against malicious botnets. However, the existing white-hat Worm Launcher of the BDS decides the number of white-hat worms, but it does not consider the white-hat worms’ placement. This paper proposes a novel machine learning (ML)-based white-hat Worm Launcher for tactical response by zoning in the BDS. The concept of zoning is introduced to grasp the malicious botnet spread with bias over the IoT network. This enables the Launcher to divide the network into zones and make tactical responses for each zone. Three tactics for tactical responses for each zone are also proposed. Then, the BDS with the Launcher is modeled by using agent-oriented Petri nets, and the effect of the proposed Launcher is evaluated. The result shows that the proposed Launcher can reduce the number of infected IoT devices by about 30%.
LipidOz enables automated elucidation of lipid carbon–carbon double bond positions from ozone-induced dissociation mass spectrometry data
Lipids play essential roles in many biological processes and disease pathology, but unambiguous identification of lipids is complicated by the presence of multiple isomeric species differing by fatty acyl chain length, stereospecifically numbered (sn) position, and position/stereochemistry of double bonds. Conventional liquid chromatography-mass spectrometry (LC-MS/MS) analyses enable the determination of fatty acyl chain lengths (and in some cases sn position) and number of double bonds, but not carbon-carbon double bond positions. Ozone-induced dissociation (OzID) is a gas-phase oxidation reaction that produces characteristic fragments from lipids containing double bonds. OzID can be incorporated into ion mobility spectrometry (IMS)-MS instruments for the structural characterization of lipids, including additional isomer separation and confident assignment of double bond positions. The complexity and repetitive nature of OzID data analysis and lack of software tool support have limited the application of OzID for routine lipidomics studies. Here, we present an open-source Python tool, LipidOz , for the automated determination of lipid double bond positions from OzID-IMS-MS data, which employs a combination of traditional automation and deep learning approaches. Our results demonstrate the ability of LipidOz to robustly assign double bond positions for lipid standard mixtures and complex lipid extracts, enabling practical application of OzID for future lipidomics. Ozone-induced dissociation (OzID) coupled with ion mobility spectrometry-mass spectrometry (IMS-MS) provides the capacity for in-depth structural elucidation of lipids with isomer separation and confident assignment of double bond positions, however, OzID data analysis remains very challenging. Here, the authors develop a Python tool, LipidOz, for the automated determination of lipid double bond locations from complex LC-OzID-IMS-MS data, with a combination of traditional automation and deep learning approaches.
Prediction of Blood-Brain Barrier Penetration (BBBP) Based on Molecular Descriptors of the Free-Form and In-Blood-Form Datasets
The blood-brain barrier (BBB) controls the entry of chemicals from the blood to the brain. Since brain drugs need to penetrate the BBB, rapid and reliable prediction of BBB penetration (BBBP) is helpful for drug development. In this study, free-form and in-blood-form datasets were prepared by modifying the original BBBP dataset, and the effects of the data modification were investigated. For each dataset, molecular descriptors were generated and used for BBBP prediction by machine learning (ML). For ML, the dataset was split into training, validation, and test data by the scaffold split algorithm MoleculeNet used. This creates an unbalanced split and makes the prediction difficult; however, we decided to use that algorithm to evaluate the predictive performance for unknown compounds dissimilar to existing ones. The highest prediction score was obtained by the random forest model using 212 descriptors from the free-form dataset, and this score was higher than the existing best score using the same split algorithm without using any external database. Furthermore, using a deep neural network, a comparable result was obtained with only 11 descriptors from the free-form dataset, and the resulting descriptors suggested the importance of recognizing the glucose-like characteristics in BBBP prediction.
AI/ML Enabled Automation System for Software Defined Disaggregated Open Radio Access Networks: Transforming Telecommunication Business
Open Air Interface (OAI) alliance recently introduced a new disaggregated Open Radio Access Networks (O-RAN) framework for next generation telecommunications and networks. This disaggregated architecture is open, automated, software defined, virtual, and supports the latest advanced technologies like Artificial Intelligence (AI) Machine Learning (AI/ML). This novel intelligent architecture enables programmers to design and customize automated applications according to the business needs and to improve quality of service in fifth generation (5G) and Beyond 5G (B5G). Its disaggregated and multivendor nature gives the opportunity to new startups and small vendors to participate and provide cheap hardware software solutions to keep the market competitive. This paper presents the disaggregated and programmable O-RAN architecture focused on automation, AI/ML services, and applications with Flexible Radio access network Intelligent Controller (FRIC). We schematically demonstrate the reinforcement learning, external applications (xApps), and automation steps to implement this disaggregated O-RAN architecture. The idea of this research paper is to implement an AI/ML enabled automation system for software defined disaggregated O-RAN, which monitors, manages, and performs AI/ML-related services, including the model deployment, optimization, inference, and training.
A Hybrid Risk Factor Evaluation Scheme for Metabolic Syndrome and Stage 3 Chronic Kidney Disease Based on Multiple Machine Learning Techniques
With the rapid development of medicine and technology, machine learning (ML) techniques are extensively applied to medical informatics and the suboptimal health field to identify critical predictor variables and risk factors. Metabolic syndrome (MetS) and chronic kidney disease (CKD) are important risk factors for many comorbidities and complications. Existing studies that utilize different statistical or ML algorithms to perform CKD data analysis mostly analyze the early-stage subjects directly, but few studies have discussed the predictive models and important risk factors for the stage-III CKD high-risk health screening population. The middle stages 3a and 3b of CKD indicate moderate renal failure. This study aims to construct an effective hybrid important risk factor evaluation scheme for subjects with MetS and CKD stages III based on ML predictive models. The six well-known ML techniques, namely random forest (RF), logistic regression (LGR), multivariate adaptive regression splines (MARS), extreme gradient boosting (XGBoost), gradient boosting with categorical features support (CatBoost), and a light gradient boosting machine (LightGBM), were used in the proposed scheme. The data were sourced from the Taiwan health examination indicators and the questionnaire responses of 71,108 members between 2005 and 2017. In total, 375 stage 3a CKD and 50 CKD stage 3b CKD patients were enrolled, and 33 different variables were used to evaluate potential risk factors. Based on the results, the top five important variables, namely BUN, SBP, Right Intraocular Pressure (R-IOP), RBCs, and T-Cho/HDL-C (C/H), were identified as significant variables for evaluating the subjects with MetS and CKD stage 3a or 3b.
Theoretical Understanding of Convolutional Neural Network: Concepts, Architectures, Applications, Future Directions
Convolutional neural networks (CNNs) are one of the main types of neural networks used for image recognition and classification. CNNs have several uses, some of which are object recognition, image processing, computer vision, and face recognition. Input for convolutional neural networks is provided through images. Convolutional neural networks are used to automatically learn a hierarchy of features that can then be utilized for classification, as opposed to manually creating features. In achieving this, a hierarchy of feature maps is constructed by iteratively convolving the input image with learned filters. Because of the hierarchical method, higher layers can learn more intricate features that are also distortion and translation invariant. The main goals of this study are to help academics understand where there are research gaps and to talk in-depth about CNN’s building blocks, their roles, and other vital issues.
Understanding of Machine Learning with Deep Learning: Architectures, Workflow, Applications and Future Directions
In recent years, deep learning (DL) has been the most popular computational approach in the field of machine learning (ML), achieving exceptional results on a variety of complex cognitive tasks, matching or even surpassing human performance. Deep learning technology, which grew out of artificial neural networks (ANN), has become a big deal in computing because it can learn from data. The ability to learn enormous volumes of data is one of the benefits of deep learning. In the past few years, the field of deep learning has grown quickly, and it has been used successfully in a wide range of traditional fields. In numerous disciplines, including cybersecurity, natural language processing, bioinformatics, robotics and control, and medical information processing, deep learning has outperformed well-known machine learning approaches. In order to provide a more ideal starting point from which to create a comprehensive understanding of deep learning, also, this article aims to provide a more detailed overview of the most significant facets of deep learning, including the most current developments in the field. Moreover, this paper discusses the significance of deep learning and the various deep learning techniques and networks. Additionally, it provides an overview of real-world application areas where deep learning techniques can be utilised. We conclude by identifying possible characteristics for future generations of deep learning modelling and providing research suggestions. On the same hand, this article intends to provide a comprehensive overview of deep learning modelling that can serve as a resource for academics and industry people alike. Lastly, we provide additional issues and recommended solutions to assist researchers in comprehending the existing research gaps. Various approaches, deep learning architectures, strategies, and applications are discussed in this work.
A survey on video-based Human Action Recognition: recent updates, datasets, challenges, and applications
Human Action Recognition (HAR) involves human activity monitoring task in different areas of medical, education, entertainment, visual surveillance, video retrieval, as well as abnormal activity identification, to name a few. Due to an increase in the usage of cameras, automated systems are in demand for the classification of such activities using computationally intelligent techniques such as Machine Learning (ML) and Deep Learning (DL). In this survey, we have discussed various ML and DL techniques for HAR for the years 2011–2019. The paper discusses the characteristics of public datasets used for HAR. It also presents a survey of various action recognition techniques along with the HAR applications namely, content-based video summarization, human–computer interaction, education, healthcare, video surveillance, abnormal activity detection, sports, and entertainment. The advantages and disadvantages of action representation, dimensionality reduction, and action analysis methods are also provided. The paper discusses challenges and future directions for HAR.