Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
6
result(s) for
"magma‐crust interaction"
Sort by:
Tracking Magma‐Crust‐Fluid Interactions at High Temporal Resolution: Oxygen Isotopes in Young Silicic Magmas of the Taupō Volcanic Zone
by
Wilson, Colin J. N.
,
Chambefort, Isabelle
,
Barker, Simon J.
in
caldera
,
Calderas
,
Contaminants
2023
Oxygen isotopes are useful for tracing interactions between magmas, crustal rocks and surface‐derived waters. We use them here to consider links between voluminous silicic magmatism and large‐scale hydrothermal circulation in New Zealand's central Taupō Volcanic Zone (TVZ). We present >350 measurements of plagioclase, quartz, hornblende and groundmass glass δ18O values from 40 eruptions from three discrete magmatic systems: Ōkataina and Taupō calderas, and the smaller Northeast Dome system. For each mineral, mean δ18O values vary by ∼1‰ (δ18Oplag = +6.7–7.8‰, δ18Oqtz = +7.7–+8.7‰, δ18Ohbl = +5.4–+6.4‰, δ18Oglass = +7.1–+8.0‰), and inter‐mineral fractionations mostly reflect high‐temperature equilibria. Outliers (e.g., ∼+6‰ or >+10‰ plagioclase) represent contaminants incorporated on short‐enough timescales to preserve disequilibrium (∼102 yrs for plagioclase). Melt δ18O values calculated from phenocrysts are ∼+7.3–+8.0‰. Where multiple magmas were involved in the same eruption their δ18Omelt values are indistinguishable, implying that their parental mushes were isotopically well‐mixed. However, small (≤0.5‰) but consistent δ18Omelt value gradients occur over millennial timescales at Ōkataina and Taupō, with short‐term ∼0.4–0.5‰ decreases in δ18Omelt values over successive post‐caldera eruptions correlating with increases in 87Sr/86Sr. These changes reflect tens of percent assimilation of a mixture of hydrothermally altered silicic plutonic material and higher‐87Sr/86Sr greywacke. These examples represent the first evidence for assimilation of altered crust into TVZ magmas. The subtle and short‐lived isotopic signals of these interactions are only recognized through the high temporal resolution of the TVZ eruptive record and complementary radiogenic isotope data. Similar interactions may have been obscured in other nominally high‐ or normal‐δ18O magmatic systems.
Plain Language Summary
Heat coming from large sub‐volcanic magma systems drives convection of surface‐derived waters through the upper few kilometers of Earth's crust, forming hydrothermal systems. The nature and depth of the interface between hydrothermal systems and their underlying magmatic heat sources are often not well constrained. High temperature alteration of rocks by surface‐derived waters lowers rock oxygen isotope (18O/16O) ratios, which can thus be used to track infiltration of water into the crust. We measured the 18O/16O ratios of minerals from the products of 40 young eruptions from the highly active Taupō Volcanic Zone, New Zealand, to assess whether the erupted magmas had melted and incorporated rocks that were altered in this way. At both Taupō and Ōkataina volcanoes, we observe periods of subtle (but statistically significant) progressive lowering of magma 18O/16O ratios over successive eruptions, suggesting that their magmatic systems at times overlapped and interacted with overlying hydrothermal systems. At both volcanoes, these reductions occurred as the magmatic system was rebuilt to shallow levels in the crust following very large (caldera‐forming) eruptions. The subtle and short‐lived signals of these interactions are only recognized here because of the unusually high eruption frequencies of Taupō and Ōkataina volcanoes.
Key Points
Large silicic mushes in the Taupō Volcanic Zone are isotopically well‐mixed with respect to oxygen but show subtle temporal δ18O variations
Temporal trends in melt δ18O values reflect transient interactions with altered and unaltered assimilants after caldera collapses
Muted (sub‐permil) melt δ18O value variability reflects limited isotopic contrasts between magmas and country rocks in this setting
Journal Article
Experimental re-melting of a continental crust: probing the deep storage zone of Campi Flegrei and Vesuvius magmas
by
Scarlato, Piergiorgio
,
Misiti, Valeria
,
Perinelli, Cristina
in
Aluminum oxide
,
Assimilation
,
Basalt
2024
Mantle magmas interact with surrounding rocks during their ascent and storage in the continental crust, leading to open system processes as wall rock partial melting. In this study, we have experimentally investigated the reactions between a leucosome depleted migmatite and a primitive K-basaltic of Campi Flegrei (Italy). Experiments were carried out at pressure of 0.8 GPa temperatures from 1250 °C to 1050 °C and constant temperature and thermal gradient conditions. The experimental products consist of biotite-free migmatite, glass and crystals of clinopyroxene, olivine, plagioclase and Cr-spinel with proportions that vary as a function of temperature. Open system isothermal experiments indicate that the chemistry of melts and phase relationships are controlled by the high Al
2
O
3
content of leucosome depleted migmatite with the glass composition shifting from K-trachybasalt towards shoshonite as the temperature decreases from 1200 °C to 1125 °C. At temperatures
1150°C, migmatite assimilation is not exclusively due to the assimilation fractional crystallization process because evidence of mingling and mixing is observed. T-gradient experiment shows melt composition ranging from shoshonite to phono-tephrite moving from the slightly crystalline zone (T = 1250 –1210 °C) at the bottom of the capsule towards the highly crystalline zone (T = 1160 –1140 °C). This SiO
2
-constant trend indicates that at temperature below the basalt solidus, the assimilation of leucosome depleted crust is represented almost exclusively by the biotite breakdown, leading to the increase in Al, Mg, Fe, Ti, and K activities in the system. The shoshonitic composition obtained in our experiments could represent the parental magma for both Campi Flegrei volcanic district and Vesuvius magmatic systems, indicating modification in a deep storage zone through mixing with the partial melts derived from restitic continental crust.
Journal Article
Early mafic magmatism and crustal anatexis on the Isle of Rum: evidence from the Am Màm intrusion breccia
by
HOLOHAN, EOGHAN P.
,
EMELEUS, C. HENRY
,
NICOLL, GRAEME R.
in
Am Mam Breccia
,
anatexis
,
Applecross Formation
2009
The Rum Igneous Centre comprises two early marginal felsic complexes (the Northern Marginal Zone and the Southern Mountains Zone), along with the later central ultrabasic–basic layered intrusions. These marginal complexes represent the remnants of near-surface to eruptive felsic magmatism associated with caldera collapse, examples of which are rare in the North Atlantic Igneous Province. Rock units include intra-caldera collapse breccias, rhyolitic ignimbrite deposits and shallow-level felsic intrusions, as well the enigmatic ‘Am Màm intrusion breccia’. The latter comprises a dacitic matrix enclosing lobate basaltic inclusions (~1–15 cm) and a variety of clasts, ranging from millimetres to tens of metres in diameter. These clasts comprise Lewisian gneiss, Torridonian sandstone and coarse gabbro. Detailed re-mapping of the Am Màm intrusion breccia has shown its timing of emplacement as syn-caldera, rather than pre-caldera as previously thought. Textural analysis of entrained clasts and adjacent, uplifted country rocks has revealed their thermal metamorphism by early mafic intrusions at greater depth than their present structural position. These findings provide a window into the evolution of the early mafic magmas responsible for driving felsic magmatism on Rum. Our data help constrain some of the physical parameters of this early magma–crust interaction and place it within the geochemical evolution of the Rum Centre.
Journal Article
Petrogenesis of the Loch Bà ring-dyke and Centre 3 granites, Isle of Mull, Scotland
2021
The Loch Bà ring-dyke and the associated Centre 3 granites represent the main events of the final phase of activity at the Palaeogene Mull igneous complex. The Loch Bà ring-dyke is one of the best exposed ring-intrusions in the world and records intense interaction between rhyolitic and basaltic magma. To reconstruct the evolutionary history of the Centre 3 magmas, we present new major- and trace-element, and new Sr isotope data as well as the first Nd and Pb isotope data for the felsic and mafic components of the Loch Bà intrusion and associated Centre 3 granites. We also report new Sr, Nd and Pb isotope data for the various crustal compositions from the region, including Moine and Dalradian metasedimentary rocks, Lewisian gneiss, and Iona Group metasediments. Isotope data for the Loch Bà rhyolite (87Sr/86Sri = 0.716) imply a considerable contribution of local Moine-type metasedimentary crust (87Sr/86Sr = 0.717–0.736), whereas Loch Bà mafic inclusions (87Sr/86Sri = 0.704–0.707) are closer to established mantle values, implying that felsic melts of dominantly crustal origin mixed with newly arriving basalt. The Centre 3 microgranites (87Sr/86Sri = 0.709–0.716), are less intensely affected by crustal assimilation relative to the Loch Bá rhyolite. Pb-isotope data confirm incorporation of Moine metasediments within the Centre 3 granites. Remarkably, the combined Sr–Nd–Pb data indicate that Centre 3 magmas record no detectable interaction with underlying deep Lewisian gneiss basement, in contrast to Centre 1 and 2 lithologies. This implies that Centre 3 magmas ascended through previously depleted or insulated feeding channels into upper-crustal reservoirs where they resided within and interacted with fertile Moine-type upper crust prior to eruption or final emplacement.
Journal Article
Unravelling the Crustal Architecture of Cape Verde from the Seamount Xenolith Record
by
Hansteen, Thor H.
,
Nilsson, David
,
Barker, Abigail K.
in
Ablation
,
alkaline volcanics
,
Basalt
2019
The Cape Verde oceanic plateau hosts 10 islands and 11 seamounts and provides an extensive suite of alkaline lavas and pyroclastic rocks. The volcanic rocks host a range of crustal and mantle xenoliths. These xenoliths provide a spectrum of lithologies available to interact with magma during transport through the lithospheric mantle and crust. We explore the origin and depth of formation of crustal xenoliths to develop a framework of magma-crust interaction and a model for the crustal architecture beneath the Cape Verde oceanic plateau. The host lavas are phononephelinites to phonolites and the crustal xenoliths are mostly mafic plutonic assemblages with one sedimentary xenolith. REE profiles of clinopyroxene in the host lavas are light rare-earth element (LREE) enriched whereas clinopyoxene from the plutonic xenoliths are LREE depleted. Modelling of REE melt compositions indicates the plutonic xenoliths are derived from mid-ocean ridge basalt (MORB)-type ocean crust. Thermobarometry indicates that clinopyroxene in the host lavas formed at depths of 17 to 46 km, whereas those in the xenoliths formed at 5 to 20 km. This places the depth of origin of the plutonic xenoliths in the oceanic crust. Therefore, the xenoliths trace magma-crust interaction to the MORB oceanic crust and overlying sediments located beneath the Cape Verde oceanic plateau.
Journal Article
Magmatic evolution of the Cadamosto Seamount, Cape Verde: beyond the spatial extent of EM1
by
Barker, A. K.
,
Andersson, A.
,
Hansteen, T. H.
in
Archipelagoes
,
Cape Verde
,
Earth and Environmental Science
2012
The Cadamosto Seamount is an unusual volcanic centre from Cape Verde, characterised by dominantly evolved volcanics, in contrast to the typically mafic volcanic centres at Cape Verde that exhibit only minor volumes of evolved volcanics. The magmatic evolution of Cadamosto Seamount is investigated to quantify the role of magma-crust interaction and thus provide a perspective on evolved end-member volcanism of Cape Verde. The preservation of mantle source signatures by Nd–Pb isotopes despite extensive magmatic differentiation provides new insights into the spatial distribution of mantle heterogeneity in the Cape Verde archipelago. Magmatic differentiation from nephelinite to phonolite involves fractional crystallisation of clinopyroxene, titanite, apatite, biotite and feldspathoids, with extensive feldspathoid accumulation being recorded in some evolved samples. Clinopyroxene crystallisation pressures of 0.38–0.17 GPa for the nephelinites constrain this extensive fractional crystallisation to the oceanic lithosphere, where no crustal assimilants or rafts of subcontinental lithospheric mantle are available. In turn, magma-crust interaction has influenced the Sr, O and S isotopes of the groundmass and late crystallising feldspathoids, which formed at shallow crustal depths reflecting the availability of oceanic sediments and anhydrite precipitated in the ocean crust. The Nd–Pb isotopes have not been affected by these processes of magma-crust interaction and hence preserve the mantle source signature. The Cadamosto Seamount samples have high
206
Pb/
204
Pb (>19.5), high εNd (+6 to +7) and negative Δ8/4Pb, showing affinity with the northern Cape Verde islands as opposed to the adjacent southern islands. Hence, the Cadamosto Seamount in the west is located spatially beyond the EM1-like component found further east. This heterogeneity is not encountered in the oceanic lithosphere beneath the Cadamosto Seamount despite greater extents of fractional crystallisation at oceanic lithospheric depths than the islands of Fogo and Santiago. Our data provide new evidence for the complex geometry of the chemically zoned Cape Verde mantle source.
Journal Article